Add files from rrivera1849/LUAR-MUD 858fcb1.
Browse files- README.md +71 -3
- config.json +16 -0
- config.py +18 -0
- merges.txt +0 -0
- model.py +219 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.json +0 -0
README.md
CHANGED
|
@@ -1,3 +1,71 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# LUAR-MUD development model forked from rrivera1849/LUAR-MUD
|
| 8 |
+
|
| 9 |
+
Author Style Representations using [LUAR](https://aclanthology.org/2021.emnlp-main.70.pdf).
|
| 10 |
+
|
| 11 |
+
The LUAR training and evaluation repository can be found [here](https://github.com/llnl/luar).
|
| 12 |
+
|
| 13 |
+
This model was trained on the Reddit Million User Dataset (MUD) found [here](https://aclanthology.org/2021.naacl-main.415.pdf).
|
| 14 |
+
|
| 15 |
+
## Usage
|
| 16 |
+
|
| 17 |
+
```python
|
| 18 |
+
from transformers import AutoModel, AutoTokenizer
|
| 19 |
+
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("rrivera1849/LUAR-MUD")
|
| 21 |
+
model = AutoModel.from_pretrained("rrivera1849/LUAR-MUD")
|
| 22 |
+
|
| 23 |
+
# we embed `episodes`, a colletion of documents presumed to come from an author
|
| 24 |
+
# NOTE: make sure that `episode_length` consistent across `episode`
|
| 25 |
+
batch_size = 3
|
| 26 |
+
episode_length = 16
|
| 27 |
+
text = [
|
| 28 |
+
["Foo"] * episode_length,
|
| 29 |
+
["Bar"] * episode_length,
|
| 30 |
+
["Zoo"] * episode_length,
|
| 31 |
+
]
|
| 32 |
+
text = [j for i in text for j in i]
|
| 33 |
+
tokenized_text = tokenizer(
|
| 34 |
+
text,
|
| 35 |
+
max_length=32,
|
| 36 |
+
padding="max_length",
|
| 37 |
+
truncation=True,
|
| 38 |
+
return_tensors="pt"
|
| 39 |
+
)
|
| 40 |
+
# inputs size: (batch_size, episode_length, max_token_length)
|
| 41 |
+
tokenized_text["input_ids"] = tokenized_text["input_ids"].reshape(batch_size, episode_length, -1)
|
| 42 |
+
tokenized_text["attention_mask"] = tokenized_text["attention_mask"].reshape(batch_size, episode_length, -1)
|
| 43 |
+
print(tokenized_text["input_ids"].size()) # torch.Size([3, 16, 32])
|
| 44 |
+
print(tokenized_text["attention_mask"].size()) # torch.Size([3, 16, 32])
|
| 45 |
+
|
| 46 |
+
out = model(**tokenized_text)
|
| 47 |
+
print(out.size()) # torch.Size([3, 512])
|
| 48 |
+
|
| 49 |
+
# to get the Transformer attentions:
|
| 50 |
+
out, attentions = model(**tokenized_text, output_attentions=True)
|
| 51 |
+
print(attentions[0].size()) # torch.Size([48, 12, 32, 32])
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
## Citing & Authors
|
| 55 |
+
|
| 56 |
+
If you find this model helpful, feel free to cite our [publication](https://aclanthology.org/2021.emnlp-main.70.pdf).
|
| 57 |
+
|
| 58 |
+
```
|
| 59 |
+
@inproceedings{uar-emnlp2021,
|
| 60 |
+
author = {Rafael A. Rivera Soto and Olivia Miano and Juanita Ordonez and Barry Chen and Aleem Khan and Marcus Bishop and Nicholas Andrews},
|
| 61 |
+
title = {Learning Universal Authorship Representations},
|
| 62 |
+
booktitle = {EMNLP},
|
| 63 |
+
year = {2021},
|
| 64 |
+
}
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## License
|
| 68 |
+
|
| 69 |
+
LUAR is distributed under the terms of the Apache License (Version 2.0).
|
| 70 |
+
|
| 71 |
+
All new contributions must be made under the Apache-2.0 licenses.
|
config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LUAR"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "config.LUARConfig",
|
| 7 |
+
"AutoModel": "model.LUAR"
|
| 8 |
+
},
|
| 9 |
+
"embedding_size": 512,
|
| 10 |
+
"k_bucket_size": 1024,
|
| 11 |
+
"model_type": "LUAR",
|
| 12 |
+
"q_bucket_size": 512,
|
| 13 |
+
"torch_dtype": "float32",
|
| 14 |
+
"transformers_version": "4.33.2",
|
| 15 |
+
"use_memory_efficient_attention": false
|
| 16 |
+
}
|
config.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import PretrainedConfig
|
| 3 |
+
|
| 4 |
+
class LUARConfig(PretrainedConfig):
|
| 5 |
+
model_type = "LUAR"
|
| 6 |
+
|
| 7 |
+
def __init__(self,
|
| 8 |
+
embedding_size: int = 512,
|
| 9 |
+
use_memory_efficient_attention=False,
|
| 10 |
+
q_bucket_size=512,
|
| 11 |
+
k_bucket_size=1024,
|
| 12 |
+
**kwargs,
|
| 13 |
+
):
|
| 14 |
+
self.embedding_size = embedding_size
|
| 15 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
| 16 |
+
self.q_bucket_size = q_bucket_size
|
| 17 |
+
self.k_bucket_size = k_bucket_size
|
| 18 |
+
super().__init__(**kwargs)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import math
|
| 3 |
+
from functools import partial
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from einops import rearrange, reduce, repeat
|
| 9 |
+
from torch.utils.checkpoint import checkpoint
|
| 10 |
+
from transformers import AutoModel, PreTrainedModel
|
| 11 |
+
|
| 12 |
+
from .config import LUARConfig
|
| 13 |
+
|
| 14 |
+
# Adapted LucidRains impl. of Memory Efficient Attention
|
| 15 |
+
# https://github.com/lucidrains/memory-efficient-attention-pytorch
|
| 16 |
+
|
| 17 |
+
def exists(val):
|
| 18 |
+
return val is not None
|
| 19 |
+
|
| 20 |
+
def summarize_qkv_chunk(
|
| 21 |
+
q, k, v,
|
| 22 |
+
mask
|
| 23 |
+
):
|
| 24 |
+
"""Dot-Product Attention for a chunk of queries, keys, and values.
|
| 25 |
+
"""
|
| 26 |
+
weight = torch.einsum('b h i d, b h j d -> b h i j', q, k)
|
| 27 |
+
|
| 28 |
+
if exists(mask):
|
| 29 |
+
# HuggingFace masks have to be added:
|
| 30 |
+
weight += mask
|
| 31 |
+
|
| 32 |
+
weight_max = weight.amax(dim = -1, keepdim = True).detach()
|
| 33 |
+
weight = weight - weight_max
|
| 34 |
+
|
| 35 |
+
exp_weight = weight.exp()
|
| 36 |
+
weighted_value = torch.einsum('b h i j, b h j d -> b h i d', exp_weight, v)
|
| 37 |
+
|
| 38 |
+
return exp_weight.sum(dim = -1), weighted_value, rearrange(weight_max, '... 1 -> ...')
|
| 39 |
+
|
| 40 |
+
checkpointed_summarize_qkv_chunk = partial(checkpoint, summarize_qkv_chunk)
|
| 41 |
+
|
| 42 |
+
def memory_efficient_attention(
|
| 43 |
+
q, k, v,
|
| 44 |
+
mask = None,
|
| 45 |
+
q_bucket_size = 512,
|
| 46 |
+
k_bucket_size = 1024,
|
| 47 |
+
eps = 1e-8
|
| 48 |
+
):
|
| 49 |
+
scale = q.shape[-1] ** -0.5
|
| 50 |
+
q = q * scale
|
| 51 |
+
|
| 52 |
+
# function
|
| 53 |
+
needs_backwards = q.requires_grad or k.requires_grad or v.requires_grad
|
| 54 |
+
summarize_qkv_fn = checkpointed_summarize_qkv_chunk if needs_backwards else summarize_qkv_chunk
|
| 55 |
+
|
| 56 |
+
# chunk all the inputs
|
| 57 |
+
q_chunks = q.split(q_bucket_size, dim = -2)
|
| 58 |
+
k_chunks = k.split(k_bucket_size, dim = -2)
|
| 59 |
+
v_chunks = v.split(k_bucket_size, dim = -2)
|
| 60 |
+
mask_chunks = mask.split(k_bucket_size, dim = -1) if exists(mask) else ((None,) * len(k_chunks))
|
| 61 |
+
|
| 62 |
+
# loop through all chunks and accumulate
|
| 63 |
+
out = []
|
| 64 |
+
for q_index, q_chunk in enumerate(q_chunks):
|
| 65 |
+
exp_weights = []
|
| 66 |
+
weighted_values = []
|
| 67 |
+
weight_maxes = []
|
| 68 |
+
|
| 69 |
+
for k_index, (k_chunk, v_chunk, mask_chunk) in enumerate(zip(k_chunks, v_chunks, mask_chunks)):
|
| 70 |
+
|
| 71 |
+
exp_weight_chunk, weighted_value_chunk, weight_max_chunk = summarize_qkv_fn(
|
| 72 |
+
q_chunk,
|
| 73 |
+
k_chunk,
|
| 74 |
+
v_chunk,
|
| 75 |
+
mask_chunk,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
exp_weights.append(exp_weight_chunk)
|
| 79 |
+
weighted_values.append(weighted_value_chunk)
|
| 80 |
+
weight_maxes.append(weight_max_chunk)
|
| 81 |
+
|
| 82 |
+
exp_weights = torch.stack(exp_weights, dim = -1)
|
| 83 |
+
weighted_values = torch.stack(weighted_values, dim = -1)
|
| 84 |
+
weight_maxes = torch.stack(weight_maxes, dim = -1)
|
| 85 |
+
|
| 86 |
+
global_max = weight_maxes.amax(dim = -1, keepdim = True)
|
| 87 |
+
renorm_factor = (weight_maxes - global_max).exp().detach()
|
| 88 |
+
|
| 89 |
+
exp_weights = exp_weights * renorm_factor
|
| 90 |
+
weighted_values = weighted_values * rearrange(renorm_factor, '... c -> ... 1 c')
|
| 91 |
+
|
| 92 |
+
all_values = weighted_values.sum(dim = -1)
|
| 93 |
+
all_weights = exp_weights.sum(dim = -1)
|
| 94 |
+
|
| 95 |
+
normalized_values = all_values / (rearrange(all_weights, '... -> ... 1') + eps)
|
| 96 |
+
out.append(normalized_values)
|
| 97 |
+
|
| 98 |
+
return torch.cat(out, dim=-2)
|
| 99 |
+
|
| 100 |
+
class SelfAttention(nn.Module):
|
| 101 |
+
"""Implements Dot-Product Self-Attention as used in "Attention is all You Need".
|
| 102 |
+
"""
|
| 103 |
+
def __init__(
|
| 104 |
+
self,
|
| 105 |
+
memory_efficient_attention=False,
|
| 106 |
+
q_bucket_size=512,
|
| 107 |
+
k_bucket_size=1024,
|
| 108 |
+
):
|
| 109 |
+
super(SelfAttention, self).__init__()
|
| 110 |
+
self.use_memory_efficient_attention = memory_efficient_attention
|
| 111 |
+
self.q_bucket_size = q_bucket_size
|
| 112 |
+
self.k_bucket_size = k_bucket_size
|
| 113 |
+
|
| 114 |
+
def forward(self, k, q, v):
|
| 115 |
+
|
| 116 |
+
if self.use_memory_efficient_attention:
|
| 117 |
+
q, k, v = map(
|
| 118 |
+
lambda t: rearrange(t, 'b n (h d) -> b h n d', h = 12),
|
| 119 |
+
(q, k, v)
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
out = memory_efficient_attention(
|
| 123 |
+
q, k, v,
|
| 124 |
+
q_bucket_size=self.q_bucket_size,
|
| 125 |
+
k_bucket_size=self.k_bucket_size
|
| 126 |
+
)
|
| 127 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 128 |
+
return out
|
| 129 |
+
else:
|
| 130 |
+
d_k = q.size(-1)
|
| 131 |
+
scores = torch.matmul(k, q.transpose(-2, -1)) / math.sqrt(d_k)
|
| 132 |
+
p_attn = F.softmax(scores, dim=-1)
|
| 133 |
+
return torch.matmul(p_attn, v)
|
| 134 |
+
|
| 135 |
+
class LUAR(PreTrainedModel):
|
| 136 |
+
"""Defines the LUAR model.
|
| 137 |
+
"""
|
| 138 |
+
config_class = LUARConfig
|
| 139 |
+
|
| 140 |
+
def __init__(self, config):
|
| 141 |
+
super().__init__(config)
|
| 142 |
+
self.create_transformer()
|
| 143 |
+
self.attn_fn = SelfAttention(
|
| 144 |
+
config.use_memory_efficient_attention,
|
| 145 |
+
config.q_bucket_size,
|
| 146 |
+
config.k_bucket_size,
|
| 147 |
+
)
|
| 148 |
+
self.linear = nn.Linear(self.hidden_size, config.embedding_size)
|
| 149 |
+
|
| 150 |
+
def create_transformer(self):
|
| 151 |
+
"""Creates the Transformer backbone.
|
| 152 |
+
"""
|
| 153 |
+
self.transformer = AutoModel.from_pretrained("sentence-transformers/paraphrase-distilroberta-base-v1")
|
| 154 |
+
self.hidden_size = self.transformer.config.hidden_size
|
| 155 |
+
self.num_attention_heads = self.transformer.config.num_attention_heads
|
| 156 |
+
self.dim_head = self.hidden_size // self.num_attention_heads
|
| 157 |
+
|
| 158 |
+
def mean_pooling(self, token_embeddings, attention_mask):
|
| 159 |
+
"""Mean Pooling as described in the SBERT paper.
|
| 160 |
+
"""
|
| 161 |
+
input_mask_expanded = repeat(attention_mask, 'b l -> b l d', d=self.hidden_size).type(token_embeddings.type())
|
| 162 |
+
sum_embeddings = reduce(token_embeddings * input_mask_expanded, 'b l d -> b d', 'sum')
|
| 163 |
+
sum_mask = torch.clamp(reduce(input_mask_expanded, 'b l d -> b d', 'sum'), min=1e-9)
|
| 164 |
+
return sum_embeddings / sum_mask
|
| 165 |
+
|
| 166 |
+
def get_episode_embeddings(self, input_ids, attention_mask, output_attentions=False, document_batch_size=0):
|
| 167 |
+
"""Computes the Author Embedding.
|
| 168 |
+
"""
|
| 169 |
+
B, E, _ = attention_mask.shape
|
| 170 |
+
|
| 171 |
+
input_ids = rearrange(input_ids, 'b e l -> (b e) l')
|
| 172 |
+
attention_mask = rearrange(attention_mask, 'b e l -> (b e) l')
|
| 173 |
+
|
| 174 |
+
if document_batch_size > 0:
|
| 175 |
+
outputs = {"last_hidden_state": [], "attentions": []}
|
| 176 |
+
for i in range(0, len(input_ids), document_batch_size):
|
| 177 |
+
out = self.transformer(
|
| 178 |
+
input_ids=input_ids[i:i+document_batch_size],
|
| 179 |
+
attention_mask=attention_mask[i:i+document_batch_size],
|
| 180 |
+
return_dict=True,
|
| 181 |
+
output_hidden_states=False,
|
| 182 |
+
output_attentions=output_attentions,
|
| 183 |
+
)
|
| 184 |
+
outputs["last_hidden_state"].append(out["last_hidden_state"])
|
| 185 |
+
if output_attentions:
|
| 186 |
+
outputs["attentions"].append(out["attentions"])
|
| 187 |
+
outputs["last_hidden_state"] = torch.cat(outputs["last_hidden_state"], dim=0)
|
| 188 |
+
if output_attentions:
|
| 189 |
+
outputs["attentions"] = tuple([torch.cat([x[i] for x in outputs["attentions"]], dim=0) for i in range(len(outputs["attentions"][0]))])
|
| 190 |
+
else:
|
| 191 |
+
outputs = self.transformer(
|
| 192 |
+
input_ids=input_ids,
|
| 193 |
+
attention_mask=attention_mask,
|
| 194 |
+
return_dict=True,
|
| 195 |
+
output_hidden_states=False,
|
| 196 |
+
output_attentions=output_attentions,
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# at this point, we're embedding individual "comments"
|
| 200 |
+
comment_embeddings = self.mean_pooling(outputs['last_hidden_state'], attention_mask)
|
| 201 |
+
comment_embeddings = rearrange(comment_embeddings, '(b e) l -> b e l', b=B, e=E)
|
| 202 |
+
|
| 203 |
+
# aggregate individual comments embeddings into episode embeddings
|
| 204 |
+
episode_embeddings = self.attn_fn(comment_embeddings, comment_embeddings, comment_embeddings)
|
| 205 |
+
episode_embeddings = reduce(episode_embeddings, 'b e l -> b l', 'max')
|
| 206 |
+
|
| 207 |
+
episode_embeddings = self.linear(episode_embeddings)
|
| 208 |
+
|
| 209 |
+
if output_attentions:
|
| 210 |
+
return episode_embeddings, outputs["attentions"]
|
| 211 |
+
|
| 212 |
+
return episode_embeddings
|
| 213 |
+
|
| 214 |
+
def forward(self, input_ids, attention_mask, output_attentions=False, document_batch_size=0):
|
| 215 |
+
"""Calculates a fixed-length feature vector for a batch of episode samples.
|
| 216 |
+
"""
|
| 217 |
+
output = self.get_episode_embeddings(input_ids, attention_mask, output_attentions, document_batch_size)
|
| 218 |
+
|
| 219 |
+
return output
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<pad>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"50264": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": false,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"full_tokenizer_file": null,
|
| 51 |
+
"mask_token": "<mask>",
|
| 52 |
+
"model_max_length": 512,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"sep_token": "</s>",
|
| 55 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 56 |
+
"trim_offsets": true,
|
| 57 |
+
"unk_token": "<unk>"
|
| 58 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|