small fix
Browse files- modeling_lsg_xlm_roberta.py +37 -78
modeling_lsg_xlm_roberta.py
CHANGED
@@ -55,7 +55,8 @@ class LSGXLMRobertaConfig(XLMRobertaConfig):
|
|
55 |
|
56 |
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
|
57 |
logger.warning(
|
58 |
-
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'],
|
|
|
59 |
self.sparsity_type = None
|
60 |
|
61 |
if self.sparsity_type in ["stride", "block_stride"]:
|
@@ -71,7 +72,7 @@ class LSGXLMRobertaConfig(XLMRobertaConfig):
|
|
71 |
self.num_global_tokens = 1
|
72 |
elif self.num_global_tokens > 512:
|
73 |
logger.warning(
|
74 |
-
"[WARNING CONFIG]: num_global_tokens > 512 is not
|
75 |
)
|
76 |
self.num_global_tokens = 512
|
77 |
|
@@ -79,6 +80,16 @@ class LSGXLMRobertaConfig(XLMRobertaConfig):
|
|
79 |
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
|
80 |
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
class BaseSelfAttention(nn.Module):
|
84 |
|
@@ -436,39 +447,13 @@ class LSGRobertaEmbeddings(RobertaEmbeddings):
|
|
436 |
return embeddings
|
437 |
|
438 |
|
439 |
-
class LSGRobertaSelfOutput(RobertaSelfOutput):
|
440 |
-
|
441 |
-
def __init__(self, config):
|
442 |
-
super().__init__(config)
|
443 |
-
|
444 |
-
|
445 |
class LSGAttention(RobertaAttention):
|
446 |
|
447 |
def __init__(self, config):
|
448 |
|
449 |
-
|
450 |
|
451 |
self.self = LSGSelfAttention(config)
|
452 |
-
self.output = LSGRobertaSelfOutput(config)
|
453 |
-
self.pruned_heads = set()
|
454 |
-
|
455 |
-
|
456 |
-
class LSGRobertaIntermediate(RobertaIntermediate):
|
457 |
-
|
458 |
-
def __init__(self, config):
|
459 |
-
super().__init__(config)
|
460 |
-
|
461 |
-
|
462 |
-
class LSGRobertaOutput(RobertaOutput):
|
463 |
-
|
464 |
-
def __init__(self, config):
|
465 |
-
super().__init__(config)
|
466 |
-
|
467 |
-
|
468 |
-
class LSGRobertaPooler(RobertaPooler):
|
469 |
-
|
470 |
-
def __init__(self, config):
|
471 |
-
super().__init__(config)
|
472 |
|
473 |
|
474 |
class LSGSelfAttention(BaseSelfAttention):
|
@@ -726,9 +711,7 @@ class LSGSelfAttention(BaseSelfAttention):
|
|
726 |
attention_mask=attention_mask,
|
727 |
output_attentions=output_attentions
|
728 |
)
|
729 |
-
|
730 |
-
#if head_mask is not None:
|
731 |
-
# outputs = (outputs[0] * head_mask[:, :, :1, :1], ) + outputs[1:]
|
732 |
return outputs
|
733 |
|
734 |
def causal_forward(
|
@@ -898,29 +881,20 @@ class LSGRobertaLayer(RobertaLayer):
|
|
898 |
|
899 |
def __init__(self, config):
|
900 |
|
901 |
-
|
902 |
|
903 |
-
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
904 |
-
self.seq_len_dim = 1
|
905 |
self.attention = LSGAttention(config)
|
906 |
-
self.is_decoder = config.is_decoder
|
907 |
-
self.add_cross_attention = config.add_cross_attention
|
908 |
if self.add_cross_attention:
|
909 |
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
910 |
self.crossattention = LSGAttention(config)
|
911 |
-
self.intermediate = LSGRobertaIntermediate(config)
|
912 |
-
self.output = LSGRobertaOutput(config)
|
913 |
|
914 |
|
915 |
class LSGRobertaEncoder(RobertaEncoder):
|
916 |
|
917 |
def __init__(self, config):
|
918 |
|
919 |
-
|
920 |
-
|
921 |
-
self.config = config
|
922 |
self.layer = nn.ModuleList([LSGRobertaLayer(config) for _ in range(config.num_hidden_layers)])
|
923 |
-
self.gradient_checkpointing = False
|
924 |
|
925 |
|
926 |
class LSGRobertaPreTrainedModel(RobertaPreTrainedModel):
|
@@ -945,7 +919,7 @@ class LSGXLMRobertaModel(LSGRobertaPreTrainedModel, RobertaModel):
|
|
945 |
config_class = LSGXLMRobertaConfig
|
946 |
|
947 |
|
948 |
-
def __init__(self, config, add_pooling_layer=
|
949 |
|
950 |
LSGRobertaPreTrainedModel.__init__(self, config)
|
951 |
|
@@ -961,7 +935,7 @@ class LSGXLMRobertaModel(LSGRobertaPreTrainedModel, RobertaModel):
|
|
961 |
|
962 |
self.embeddings = LSGRobertaEmbeddings(config)
|
963 |
self.encoder = LSGRobertaEncoder(config)
|
964 |
-
self.pooler =
|
965 |
|
966 |
if config.add_cross_attention:
|
967 |
logger.warning(
|
@@ -988,6 +962,12 @@ class LSGXLMRobertaModel(LSGRobertaPreTrainedModel, RobertaModel):
|
|
988 |
return_dict=None
|
989 |
):
|
990 |
|
|
|
|
|
|
|
|
|
|
|
|
|
991 |
inputs_ = input_ids if input_ids is not None else inputs_embeds
|
992 |
n, t = inputs_.size()[:2]
|
993 |
|
@@ -1032,33 +1012,26 @@ class LSGXLMRobertaModel(LSGRobertaPreTrainedModel, RobertaModel):
|
|
1032 |
return_dict=return_dict
|
1033 |
)
|
1034 |
|
1035 |
-
|
1036 |
if self.pool_with_global:
|
1037 |
-
|
1038 |
|
1039 |
diff = t - t_
|
1040 |
-
n, _, d =
|
1041 |
-
|
1042 |
|
1043 |
# Adapt sequence to initial shape
|
1044 |
if diff < 0:
|
1045 |
-
|
1046 |
|
1047 |
-
encoder_outputs.last_hidden_state = context
|
1048 |
-
sequence_output = encoder_outputs[0]
|
1049 |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1050 |
|
1051 |
if not return_dict:
|
1052 |
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
1057 |
-
past_key_values=encoder_outputs.past_key_values,
|
1058 |
-
hidden_states=encoder_outputs.hidden_states,
|
1059 |
-
attentions=encoder_outputs.attentions,
|
1060 |
-
cross_attentions=encoder_outputs.cross_attentions,
|
1061 |
-
)
|
1062 |
|
1063 |
def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
|
1064 |
|
@@ -1093,7 +1066,7 @@ class LSGXLMRobertaForCausalLM(LSGRobertaPreTrainedModel, RobertaForCausalLM):
|
|
1093 |
logger.warning("If you want to use `LSGRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1094 |
|
1095 |
self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
|
1096 |
-
self.lm_head =
|
1097 |
|
1098 |
# The LM head weights require special treatment only when they are tied with the word embeddings
|
1099 |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
@@ -1123,7 +1096,7 @@ class LSGXLMRobertaForMaskedLM(LSGRobertaPreTrainedModel, RobertaForMaskedLM):
|
|
1123 |
)
|
1124 |
|
1125 |
self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
|
1126 |
-
self.lm_head =
|
1127 |
|
1128 |
# The LM head weights require special treatment only when they are tied with the word embeddings
|
1129 |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
@@ -1132,13 +1105,6 @@ class LSGXLMRobertaForMaskedLM(LSGRobertaPreTrainedModel, RobertaForMaskedLM):
|
|
1132 |
self.post_init()
|
1133 |
|
1134 |
|
1135 |
-
class LSGRobertaLMHead(RobertaLMHead):
|
1136 |
-
"""LSG Head for masked language modeling."""
|
1137 |
-
|
1138 |
-
def __init__(self, config):
|
1139 |
-
super().__init__(config)
|
1140 |
-
|
1141 |
-
|
1142 |
class LSGXLMRobertaForSequenceClassification(LSGRobertaPreTrainedModel, RobertaForSequenceClassification):
|
1143 |
"""
|
1144 |
This class overrides :class:`~transformers.RobertaForSequenceClassification`. Please check the superclass for the
|
@@ -1155,19 +1121,12 @@ class LSGXLMRobertaForSequenceClassification(LSGRobertaPreTrainedModel, RobertaF
|
|
1155 |
self.config = config
|
1156 |
|
1157 |
self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
|
1158 |
-
self.classifier =
|
1159 |
|
1160 |
# Initialize weights and apply final processing
|
1161 |
self.post_init()
|
1162 |
|
1163 |
|
1164 |
-
class LSGRobertaClassificationHead(RobertaClassificationHead):
|
1165 |
-
"""Head for sentence-level classification tasks."""
|
1166 |
-
|
1167 |
-
def __init__(self, config):
|
1168 |
-
super().__init__(config)
|
1169 |
-
|
1170 |
-
|
1171 |
class LSGXLMRobertaForMultipleChoice(LSGRobertaPreTrainedModel, RobertaForMultipleChoice):
|
1172 |
"""
|
1173 |
This class overrides :class:`~transformers.RobertaForMultipleChoice`. Please check the superclass for the
|
|
|
55 |
|
56 |
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
|
57 |
logger.warning(
|
58 |
+
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], \
|
59 |
+
setting sparsity_type=None, computation will skip sparse attention")
|
60 |
self.sparsity_type = None
|
61 |
|
62 |
if self.sparsity_type in ["stride", "block_stride"]:
|
|
|
72 |
self.num_global_tokens = 1
|
73 |
elif self.num_global_tokens > 512:
|
74 |
logger.warning(
|
75 |
+
"[WARNING CONFIG]: num_global_tokens > 512 is not allowed, setting num_global_tokens=512"
|
76 |
)
|
77 |
self.num_global_tokens = 512
|
78 |
|
|
|
80 |
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
|
81 |
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
|
82 |
|
83 |
+
if self.mask_first_token and not pool_with_global:
|
84 |
+
logger.warning(
|
85 |
+
"[WARNING CONFIG]: pool_with_global==False is not compatible with mask_first_token==True. Setting pool_with_global to True.")
|
86 |
+
self.pool_with_global = True
|
87 |
+
|
88 |
+
if hasattr(self, "position_embedding_type"):
|
89 |
+
if self.position_embedding_type != "absolute":
|
90 |
+
logger.warning(
|
91 |
+
"[WARNING CONFIG]: LSG Attention is not compatible with relative positional embedding and will skip its computation. Set position_embedding_type='absolute' to remove this warning.")
|
92 |
+
|
93 |
|
94 |
class BaseSelfAttention(nn.Module):
|
95 |
|
|
|
447 |
return embeddings
|
448 |
|
449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
class LSGAttention(RobertaAttention):
|
451 |
|
452 |
def __init__(self, config):
|
453 |
|
454 |
+
super().__init__(config)
|
455 |
|
456 |
self.self = LSGSelfAttention(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
|
458 |
|
459 |
class LSGSelfAttention(BaseSelfAttention):
|
|
|
711 |
attention_mask=attention_mask,
|
712 |
output_attentions=output_attentions
|
713 |
)
|
714 |
+
|
|
|
|
|
715 |
return outputs
|
716 |
|
717 |
def causal_forward(
|
|
|
881 |
|
882 |
def __init__(self, config):
|
883 |
|
884 |
+
super().__init__(config)
|
885 |
|
|
|
|
|
886 |
self.attention = LSGAttention(config)
|
|
|
|
|
887 |
if self.add_cross_attention:
|
888 |
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
889 |
self.crossattention = LSGAttention(config)
|
|
|
|
|
890 |
|
891 |
|
892 |
class LSGRobertaEncoder(RobertaEncoder):
|
893 |
|
894 |
def __init__(self, config):
|
895 |
|
896 |
+
super().__init__(config)
|
|
|
|
|
897 |
self.layer = nn.ModuleList([LSGRobertaLayer(config) for _ in range(config.num_hidden_layers)])
|
|
|
898 |
|
899 |
|
900 |
class LSGRobertaPreTrainedModel(RobertaPreTrainedModel):
|
|
|
919 |
config_class = LSGXLMRobertaConfig
|
920 |
|
921 |
|
922 |
+
def __init__(self, config, add_pooling_layer=True):
|
923 |
|
924 |
LSGRobertaPreTrainedModel.__init__(self, config)
|
925 |
|
|
|
935 |
|
936 |
self.embeddings = LSGRobertaEmbeddings(config)
|
937 |
self.encoder = LSGRobertaEncoder(config)
|
938 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
939 |
|
940 |
if config.add_cross_attention:
|
941 |
logger.warning(
|
|
|
962 |
return_dict=None
|
963 |
):
|
964 |
|
965 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
966 |
+
output_hidden_states = (
|
967 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
968 |
+
)
|
969 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
970 |
+
|
971 |
inputs_ = input_ids if input_ids is not None else inputs_embeds
|
972 |
n, t = inputs_.size()[:2]
|
973 |
|
|
|
1012 |
return_dict=return_dict
|
1013 |
)
|
1014 |
|
1015 |
+
sequence_output = encoder_outputs[0]
|
1016 |
if self.pool_with_global:
|
1017 |
+
sequence_output[:, self.num_global_tokens] = sequence_output[:, 0]
|
1018 |
|
1019 |
diff = t - t_
|
1020 |
+
n, _, d = sequence_output.size()
|
1021 |
+
sequence_output = sequence_output[..., self.num_global_tokens:, :]
|
1022 |
|
1023 |
# Adapt sequence to initial shape
|
1024 |
if diff < 0:
|
1025 |
+
sequence_output = sequence_output[:, :t]
|
1026 |
|
|
|
|
|
1027 |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1028 |
|
1029 |
if not return_dict:
|
1030 |
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1031 |
+
|
1032 |
+
encoder_outputs.last_hidden_state = sequence_output
|
1033 |
+
encoder_outputs.pooler_output = pooled_output
|
1034 |
+
return encoder_outputs
|
|
|
|
|
|
|
|
|
|
|
1035 |
|
1036 |
def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
|
1037 |
|
|
|
1066 |
logger.warning("If you want to use `LSGRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1067 |
|
1068 |
self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
|
1069 |
+
self.lm_head = RobertaLMHead(config)
|
1070 |
|
1071 |
# The LM head weights require special treatment only when they are tied with the word embeddings
|
1072 |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
|
|
1096 |
)
|
1097 |
|
1098 |
self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
|
1099 |
+
self.lm_head = RobertaLMHead(config)
|
1100 |
|
1101 |
# The LM head weights require special treatment only when they are tied with the word embeddings
|
1102 |
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
|
|
1105 |
self.post_init()
|
1106 |
|
1107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1108 |
class LSGXLMRobertaForSequenceClassification(LSGRobertaPreTrainedModel, RobertaForSequenceClassification):
|
1109 |
"""
|
1110 |
This class overrides :class:`~transformers.RobertaForSequenceClassification`. Please check the superclass for the
|
|
|
1121 |
self.config = config
|
1122 |
|
1123 |
self.roberta = LSGXLMRobertaModel(config, add_pooling_layer=False)
|
1124 |
+
self.classifier = RobertaClassificationHead(config)
|
1125 |
|
1126 |
# Initialize weights and apply final processing
|
1127 |
self.post_init()
|
1128 |
|
1129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1130 |
class LSGXLMRobertaForMultipleChoice(LSGRobertaPreTrainedModel, RobertaForMultipleChoice):
|
1131 |
"""
|
1132 |
This class overrides :class:`~transformers.RobertaForMultipleChoice`. Please check the superclass for the
|