embodied_explainer / robohusky /convert_reward_fp16.py
ccclemenfff's picture
Add model code supports
cf932d8
"""
Usage:
srun -p INTERN2 --job-name='convert_2_fp16' --gres=gpu:0 --cpus-per-task=8 --quotatype="auto" python -u husky/convert_reward_fp16.py --in-checkpoint work_dirs/llm/Ziya-LLaMA-7B-Reward --out-checkpoint work_dirs/llm/reward_model
"""
import argparse
import os.path
from transformers import LlamaTokenizer, AutoModelForSequenceClassification
import torch
def convert_fp16(in_checkpoint, out_checkpoint):
tokenizer = LlamaTokenizer.from_pretrained(in_checkpoint, use_fast=False)
model = AutoModelForSequenceClassification.from_pretrained(
in_checkpoint, torch_dtype=torch.float16, low_cpu_mem_usage=False
)
if not os.path.exists(out_checkpoint):
os.mkdir(out_checkpoint)
model.save_pretrained(out_checkpoint)
tokenizer.save_pretrained(out_checkpoint)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--in-checkpoint", type=str, help="Path to the model")
parser.add_argument("--out-checkpoint", type=str, help="Path to the output model")
args = parser.parse_args()
convert_fp16(args.in_checkpoint, args.out_checkpoint)