Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,66 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- mistralai/Mistral-7B-Instruct-v0.3
|
7 |
+
---
|
8 |
+
# Model Card for `first_mistral`
|
9 |
+
`first_mistral` is a language model trained to act as a listwise reranker, decoding from the first-token logits only to improve efficiency while maintaining effectiveness.
|
10 |
+
`first_mistral` is built on Mistral-7B-Instruct-v0.3, following [FIRST](https://arxiv.org/abs/2406.15657)'s strategy, trained using 40K GPT-4 labeled rerank instances from RankZephyr.
|
11 |
+
More details can be found in the paper.
|
12 |
+
|
13 |
+
## Model description
|
14 |
+
|
15 |
+
- **Model type:** A 7B parameter listwise reranker fine-tuned from Mistral-7B-Instruct-v0.3
|
16 |
+
- **Language(s) (NLP):** Primarily English
|
17 |
+
- **License:** MIT
|
18 |
+
- **Fine-tuned from model:** [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3)
|
19 |
+
|
20 |
+
### Model Sources
|
21 |
+
|
22 |
+
- **Repository:** https://github.com/castorini/rank_llm
|
23 |
+
- **Paper:** https://arxiv.org/abs/2411.05508
|
24 |
+
|
25 |
+
## Evaluation
|
26 |
+
|
27 |
+
At the time of release, `first_mistral` outperforms the original FIRST implementation on most subsets of the BEIR benchmark.
|
28 |
+
More details that compare other LLM rerankers on more datasets can be found in the paper.
|
29 |
+
|
30 |
+
| Dataset | FIRST (original) | first_mistral |
|
31 |
+
|----------------|-------------|--------------|
|
32 |
+
| climate-fever | **0.2672** | 0.2417 |
|
33 |
+
| dbpedia-entity | **0.5092** | 0.5033 |
|
34 |
+
| fever | 0.8164 | **0.8413** |
|
35 |
+
| fiqa | 0.4223 | **0.4778** |
|
36 |
+
| hotpotqa | 0.7424 | **0.7705** |
|
37 |
+
| msmarco | 0.4425 | **0.4512** |
|
38 |
+
| nfcorpus | 0.3725 | **0.3816** |
|
39 |
+
| nq | 0.6638 | **0.6985** |
|
40 |
+
| scidocs | 0.2047 | **0.2110** |
|
41 |
+
| scifact | 0.7459 | **0.7769** |
|
42 |
+
| trec-covid | 0.7913 | **0.7666** |
|
43 |
+
| Average | 0.5435 | **0.5564** |
|
44 |
+
|
45 |
+
## Citation
|
46 |
+
If you find `first_mistral` useful for your work, please consider citing:
|
47 |
+
|
48 |
+
```
|
49 |
+
@ARTICLE{chen2024firstrepro,
|
50 |
+
title = title={An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking},
|
51 |
+
author = {Zijian Chen and Ronak Pradeep and Jimmy Lin},
|
52 |
+
year = {2024},
|
53 |
+
journal = {arXiv:2411.05508}
|
54 |
+
}
|
55 |
+
```
|
56 |
+
|
57 |
+
If you would like to cite the FIRST methodology, please consider citing:
|
58 |
+
|
59 |
+
```
|
60 |
+
@ARTICLE{reddy2024first,
|
61 |
+
title = {FIRST: Faster Improved Listwise Reranking with Single Token Decoding},
|
62 |
+
author = {Reddy, Revanth Gangi and Doo, JaeHyeok and Xu, Yifei and Sultan, Md Arafat and Swain, Deevya and Sil, Avirup and Ji, Heng},
|
63 |
+
year = {2024}
|
64 |
+
journal = {arXiv:2406.15657},
|
65 |
+
}
|
66 |
+
```
|