cassador commited on
Commit
8a1e822
·
verified ·
1 Parent(s): 46257c9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -0
README.md ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ datasets:
9
+ - indonli
10
+ language:
11
+ - id
12
+ ---
13
+
14
+ # indobert-finetuned-indonli
15
+
16
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
17
+
18
+ It's based on the [IndoBERT](https://huggingface.co/indobenchmark/indobert-base-p2) model by [indobenchmark](https://github.com/IndoNLP/indonlu) and trained using the IndoNLI dataset on [Google Colab](https://colab.research.google.com/drive/1Qs1Eo5x5WsSCV6hU3MWbnl8hU3pZI4E5?usp=sharing).
19
+
20
+ <!--- Describe your model here -->
21
+
22
+ ## Usage (Sentence-Transformers)
23
+
24
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
25
+
26
+ ```
27
+ pip install -U sentence-transformers
28
+ ```
29
+
30
+ Then you can use the model like this:
31
+
32
+ ```python
33
+ from sentence_transformers import SentenceTransformer
34
+ sentences = ["This is an example sentence", "Each sentence is converted"]
35
+
36
+ model = SentenceTransformer('indobert-finetuned-indonli')
37
+ embeddings = model.encode(sentences)
38
+ print(embeddings)
39
+ ```
40
+
41
+
42
+
43
+ ## Usage (HuggingFace Transformers)
44
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
45
+
46
+ ```python
47
+ from transformers import AutoTokenizer, AutoModel
48
+ import torch
49
+
50
+
51
+ #Mean Pooling - Take attention mask into account for correct averaging
52
+ def mean_pooling(model_output, attention_mask):
53
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
54
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
55
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
56
+
57
+
58
+ # Sentences we want sentence embeddings for
59
+ sentences = ['This is an example sentence', 'Each sentence is converted']
60
+
61
+ # Load model from HuggingFace Hub
62
+ tokenizer = AutoTokenizer.from_pretrained('indobert-finetuned-indonli')
63
+ model = AutoModel.from_pretrained('indobert-finetuned-indonli')
64
+
65
+ # Tokenize sentences
66
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
67
+
68
+ # Compute token embeddings
69
+ with torch.no_grad():
70
+ model_output = model(**encoded_input)
71
+
72
+ # Perform pooling. In this case, mean pooling.
73
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
74
+
75
+ print("Sentence embeddings:")
76
+ print(sentence_embeddings)
77
+ ```
78
+
79
+
80
+
81
+ ## Evaluation Results
82
+
83
+ <!--- Describe how your model was evaluated -->
84
+
85
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=indobert-finetuned-indonli)
86
+
87
+
88
+ ## Training
89
+ The model was trained with the parameters:
90
+
91
+ **DataLoader**:
92
+
93
+ `torch.utils.data.dataloader.DataLoader` of length 646 with parameters:
94
+ ```
95
+ {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
96
+ ```
97
+
98
+ **Loss**:
99
+
100
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
101
+ ```
102
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
103
+ ```
104
+
105
+ Parameters of the fit()-Method:
106
+ ```
107
+ {
108
+ "epochs": 1,
109
+ "evaluation_steps": 64,
110
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
111
+ "max_grad_norm": 1,
112
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
113
+ "optimizer_params": {
114
+ "lr": 2e-05
115
+ },
116
+ "scheduler": "WarmupLinear",
117
+ "steps_per_epoch": null,
118
+ "warmup_steps": 65,
119
+ "weight_decay": 0.01
120
+ }
121
+ ```
122
+
123
+
124
+ ## Full Model Architecture
125
+ ```
126
+ SentenceTransformer(
127
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
128
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
129
+ )
130
+ ```
131
+
132
+ ## Citing & Authors
133
+
134
+ <!--- Describe where people can find more information -->