update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: token_classification_test
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# token_classification_test
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2859
|
24 |
+
- Precision: 0.9187
|
25 |
+
- Recall: 0.9095
|
26 |
+
- F1: 0.9140
|
27 |
+
- Accuracy: 0.9308
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 47 | 1.2700 | 0.6758 | 0.5896 | 0.6298 | 0.7121 |
|
59 |
+
| No log | 2.0 | 94 | 0.6468 | 0.8315 | 0.7864 | 0.8083 | 0.8461 |
|
60 |
+
| No log | 3.0 | 141 | 0.4607 | 0.8709 | 0.8422 | 0.8563 | 0.8845 |
|
61 |
+
| No log | 4.0 | 188 | 0.3841 | 0.8924 | 0.8686 | 0.8804 | 0.9047 |
|
62 |
+
| No log | 5.0 | 235 | 0.3380 | 0.9060 | 0.8905 | 0.8982 | 0.9180 |
|
63 |
+
| No log | 6.0 | 282 | 0.3164 | 0.9096 | 0.8934 | 0.9014 | 0.9213 |
|
64 |
+
| No log | 7.0 | 329 | 0.3072 | 0.9090 | 0.9001 | 0.9045 | 0.9227 |
|
65 |
+
| No log | 8.0 | 376 | 0.2997 | 0.9156 | 0.9009 | 0.9082 | 0.9258 |
|
66 |
+
| No log | 9.0 | 423 | 0.2940 | 0.9141 | 0.9058 | 0.9099 | 0.9269 |
|
67 |
+
| No log | 10.0 | 470 | 0.2904 | 0.9199 | 0.9076 | 0.9137 | 0.9312 |
|
68 |
+
| 0.5334 | 11.0 | 517 | 0.2894 | 0.9210 | 0.9093 | 0.9151 | 0.9314 |
|
69 |
+
| 0.5334 | 12.0 | 564 | 0.2884 | 0.9173 | 0.9081 | 0.9127 | 0.9295 |
|
70 |
+
| 0.5334 | 13.0 | 611 | 0.2862 | 0.9184 | 0.9089 | 0.9136 | 0.9305 |
|
71 |
+
| 0.5334 | 14.0 | 658 | 0.2859 | 0.9196 | 0.9103 | 0.9149 | 0.9310 |
|
72 |
+
| 0.5334 | 15.0 | 705 | 0.2859 | 0.9187 | 0.9095 | 0.9140 | 0.9308 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.31.0
|
78 |
+
- Pytorch 2.0.1+cu118
|
79 |
+
- Datasets 2.14.3
|
80 |
+
- Tokenizers 0.13.3
|