casonshep commited on
Commit
870a696
1 Parent(s): a32f608

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: token_classification_test
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # token_classification_test
20
+
21
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2859
24
+ - Precision: 0.9187
25
+ - Recall: 0.9095
26
+ - F1: 0.9140
27
+ - Accuracy: 0.9308
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 47 | 1.2700 | 0.6758 | 0.5896 | 0.6298 | 0.7121 |
59
+ | No log | 2.0 | 94 | 0.6468 | 0.8315 | 0.7864 | 0.8083 | 0.8461 |
60
+ | No log | 3.0 | 141 | 0.4607 | 0.8709 | 0.8422 | 0.8563 | 0.8845 |
61
+ | No log | 4.0 | 188 | 0.3841 | 0.8924 | 0.8686 | 0.8804 | 0.9047 |
62
+ | No log | 5.0 | 235 | 0.3380 | 0.9060 | 0.8905 | 0.8982 | 0.9180 |
63
+ | No log | 6.0 | 282 | 0.3164 | 0.9096 | 0.8934 | 0.9014 | 0.9213 |
64
+ | No log | 7.0 | 329 | 0.3072 | 0.9090 | 0.9001 | 0.9045 | 0.9227 |
65
+ | No log | 8.0 | 376 | 0.2997 | 0.9156 | 0.9009 | 0.9082 | 0.9258 |
66
+ | No log | 9.0 | 423 | 0.2940 | 0.9141 | 0.9058 | 0.9099 | 0.9269 |
67
+ | No log | 10.0 | 470 | 0.2904 | 0.9199 | 0.9076 | 0.9137 | 0.9312 |
68
+ | 0.5334 | 11.0 | 517 | 0.2894 | 0.9210 | 0.9093 | 0.9151 | 0.9314 |
69
+ | 0.5334 | 12.0 | 564 | 0.2884 | 0.9173 | 0.9081 | 0.9127 | 0.9295 |
70
+ | 0.5334 | 13.0 | 611 | 0.2862 | 0.9184 | 0.9089 | 0.9136 | 0.9305 |
71
+ | 0.5334 | 14.0 | 658 | 0.2859 | 0.9196 | 0.9103 | 0.9149 | 0.9310 |
72
+ | 0.5334 | 15.0 | 705 | 0.2859 | 0.9187 | 0.9095 | 0.9140 | 0.9308 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.31.0
78
+ - Pytorch 2.0.1+cu118
79
+ - Datasets 2.14.3
80
+ - Tokenizers 0.13.3