Ma787639046 commited on
Commit
43b2cff
·
1 Parent(s): 9f624bd
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ - transformers
7
+ ---
8
+
9
+ # CoT-MAE MS-Marco Passage Reranker
10
+
11
+ CoT-MAE is a transformers based Mask Auto-Encoder pretraining architecture designed for Dense Passage Retrieval.
12
+ **CoT-MAE MS-Marco Passage Reranker** is a reranker trained with CoT-MAE retriever mined MS-Marco hard negatives using [Tevatron](github.com/texttron/tevatron) toolkit.
13
+
14
+ Details can be found in our paper and codes.
15
+
16
+ Paper: [ConTextual Mask Auto-Encoder for Dense Passage Retrieval](https://arxiv.org/abs/2208.07670).
17
+
18
+ Code: [caskcsg/ir/cotmae](https://github.com/caskcsg/ir/tree/main/cotmae)
19
+
20
+ ## Scores
21
+ ### MS-Marco Passage full-ranking + top-200 rerank
22
+ We first retrieve using **CoT-MAE MS-Marco Passage Retriever** (named cotmae_base_msmarco_retriever), then use reranker to re-score top-200 retrieval results. Performances are as follows.
23
+
24
+ | MRR @10 | recall@1 | recall@50 | recall@200 | QueriesRanked |
25
+ |---------|----------|-----------|------------|----------------|
26
+ | 0.43884 | 0.304871 | 0.903582 | 0.956734 | 6980 |
27
+
28
+ ## Citations
29
+ If you find our work useful, please cite our paper.
30
+ ```bibtex
31
+ @misc{https://doi.org/10.48550/arxiv.2208.07670,
32
+ doi = {10.48550/ARXIV.2208.07670},
33
+ url = {https://arxiv.org/abs/2208.07670},
34
+ author = {Wu, Xing and Ma, Guangyuan and Lin, Meng and Lin, Zijia and Wang, Zhongyuan and Hu, Songlin},
35
+ keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
36
+ title = {ConTextual Mask Auto-Encoder for Dense Passage Retrieval},
37
+ publisher = {arXiv},
38
+ year = {2022},
39
+ copyright = {arXiv.org perpetual, non-exclusive license}
40
+ }
41
+ ```
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cotmae-base-800k",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.17.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67c723bbd137764e36bd3c85af5dec668b395dc10ef24783371309fa14b5e610
3
+ size 438022345
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff