Ma787639046
commited on
Commit
·
43b2cff
1
Parent(s):
9f624bd
init
Browse files- README.md +41 -0
- config.json +32 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- feature-extraction
|
5 |
+
- sentence-similarity
|
6 |
+
- transformers
|
7 |
+
---
|
8 |
+
|
9 |
+
# CoT-MAE MS-Marco Passage Reranker
|
10 |
+
|
11 |
+
CoT-MAE is a transformers based Mask Auto-Encoder pretraining architecture designed for Dense Passage Retrieval.
|
12 |
+
**CoT-MAE MS-Marco Passage Reranker** is a reranker trained with CoT-MAE retriever mined MS-Marco hard negatives using [Tevatron](github.com/texttron/tevatron) toolkit.
|
13 |
+
|
14 |
+
Details can be found in our paper and codes.
|
15 |
+
|
16 |
+
Paper: [ConTextual Mask Auto-Encoder for Dense Passage Retrieval](https://arxiv.org/abs/2208.07670).
|
17 |
+
|
18 |
+
Code: [caskcsg/ir/cotmae](https://github.com/caskcsg/ir/tree/main/cotmae)
|
19 |
+
|
20 |
+
## Scores
|
21 |
+
### MS-Marco Passage full-ranking + top-200 rerank
|
22 |
+
We first retrieve using **CoT-MAE MS-Marco Passage Retriever** (named cotmae_base_msmarco_retriever), then use reranker to re-score top-200 retrieval results. Performances are as follows.
|
23 |
+
|
24 |
+
| MRR @10 | recall@1 | recall@50 | recall@200 | QueriesRanked |
|
25 |
+
|---------|----------|-----------|------------|----------------|
|
26 |
+
| 0.43884 | 0.304871 | 0.903582 | 0.956734 | 6980 |
|
27 |
+
|
28 |
+
## Citations
|
29 |
+
If you find our work useful, please cite our paper.
|
30 |
+
```bibtex
|
31 |
+
@misc{https://doi.org/10.48550/arxiv.2208.07670,
|
32 |
+
doi = {10.48550/ARXIV.2208.07670},
|
33 |
+
url = {https://arxiv.org/abs/2208.07670},
|
34 |
+
author = {Wu, Xing and Ma, Guangyuan and Lin, Meng and Lin, Zijia and Wang, Zhongyuan and Hu, Songlin},
|
35 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
36 |
+
title = {ConTextual Mask Auto-Encoder for Dense Passage Retrieval},
|
37 |
+
publisher = {arXiv},
|
38 |
+
year = {2022},
|
39 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
40 |
+
}
|
41 |
+
```
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "cotmae-base-800k",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.17.0",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67c723bbd137764e36bd3c85af5dec668b395dc10ef24783371309fa14b5e610
|
3 |
+
size 438022345
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|