a2c-PandaReachDense-v2 / config.json
casals90's picture
Initial commit
5a86e7d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0f2451ae60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0f24515e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685899917425564823, "learning_rate": 0.00196, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9gDmr8zhxYhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+kzYPo6mTTwIxxg/+kzYPo6mTTwIxxg/+kzYPo6mTTwIxxg/+kzYPo6mTTwIxxg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2wLTv6aPK774S9m/vMKvPqm4gz7NDCk/Cdjcv2zvKr8JvIa/s2qPP0ZQyj9lLcy+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6TNg+jqZNPAjHGD+wOOw8FZWUOmNWlzz6TNg+jqZNPAjHGD+wOOw8FZWUOmNWlzz6TNg+jqZNPAjHGD+wOOw8FZWUOmNWlzz6TNg+jqZNPAjHGD+wOOw8FZWUOmNWlzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42246228 0.01255192 0.596787 ]\n [0.42246228 0.01255192 0.596787 ]\n [0.42246228 0.01255192 0.596787 ]\n [0.42246228 0.01255192 0.596787 ]]", "desired_goal": "[[-1.6485246 -0.16754016 -1.6976309 ]\n [ 0.34328258 0.25726822 0.6603516 ]\n [-1.7253429 -0.6677158 -1.0526134 ]\n [ 1.1204437 1.5805748 -0.39878383]]", "observation": "[[0.42246228 0.01255192 0.596787 0.02883562 0.00113359 0.01847381]\n [0.42246228 0.01255192 0.596787 0.02883562 0.00113359 0.01847381]\n [0.42246228 0.01255192 0.596787 0.02883562 0.00113359 0.01847381]\n [0.42246228 0.01255192 0.596787 0.02883562 0.00113359 0.01847381]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMGGlvX6zFb5FcFk9H8nmvS2uNb374rI9t/cRuz7r3j2La9c9razfPVQg7r2segU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08075178 -0.14619252 0.05308558]\n [-0.1126883 -0.04435556 0.08734699]\n [-0.00222729 0.10884713 0.10518559]\n [ 0.10921607 -0.1162726 0.13035077]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ5JZvcMt/r+UhpRSlIwBbJRLMowBdJRHQLB/20Sh8IB1fZQoaAZoCWgPQwjTLTvEP2zzv5SGlFKUaBVLMmgWR0Cwf7FO9FnadX2UKGgGaAloD0MIW5iFdk6z47+UhpRSlGgVSzJoFkdAsH+IqNIbwXV9lChoBmgJaA9DCMdmR6rvPPW/lIaUUpRoFUsyaBZHQLB/YD+R5kd1fZQoaAZoCWgPQwjzk2qfjsfev5SGlFKUaBVLMmgWR0CwgFKtYB/7dX2UKGgGaAloD0MI5ssLsI+O9r+UhpRSlGgVSzJoFkdAsIAol8gIQnV9lChoBmgJaA9DCBCU2/Y9auu/lIaUUpRoFUsyaBZHQLB//+6iCat1fZQoaAZoCWgPQwhMVdriGt/0v5SGlFKUaBVLMmgWR0Cwf9eBUaQ4dX2UKGgGaAloD0MIu9Bcp5EW8b+UhpRSlGgVSzJoFkdAsIDHKYAsCnV9lChoBmgJaA9DCGXFcHUABPG/lIaUUpRoFUsyaBZHQLCAnShakh11fZQoaAZoCWgPQwg826M33Mf2v5SGlFKUaBVLMmgWR0CwgHR51Ng0dX2UKGgGaAloD0MIH/gYrDi1AMCUhpRSlGgVSzJoFkdAsIBL/HYHxHV9lChoBmgJaA9DCPhrskY9RP+/lIaUUpRoFUsyaBZHQLCBPFotcwB1fZQoaAZoCWgPQwhFEVK3s+/8v5SGlFKUaBVLMmgWR0CwgRJMHryEdX2UKGgGaAloD0MIn5EIjWCj8b+UhpRSlGgVSzJoFkdAsIDpoEjgRHV9lChoBmgJaA9DCCWt+IbC5+u/lIaUUpRoFUsyaBZHQLCAwRTS9dx1fZQoaAZoCWgPQwiUoSqm0g/zv5SGlFKUaBVLMmgWR0CwgbJuVHFxdX2UKGgGaAloD0MIrz+Jz50g8b+UhpRSlGgVSzJoFkdAsIGIacZtN3V9lChoBmgJaA9DCEoKLIApwwbAlIaUUpRoFUsyaBZHQLCBX8EV32V1fZQoaAZoCWgPQwhRLSKKydv1v5SGlFKUaBVLMmgWR0CwgTc5wOvudX2UKGgGaAloD0MIY7ml1ZD48b+UhpRSlGgVSzJoFkdAsIInxmTTv3V9lChoBmgJaA9DCNsV+mAZm/+/lIaUUpRoFUsyaBZHQLCB/cqe9SN1fZQoaAZoCWgPQwhJ1XYTfNPvv5SGlFKUaBVLMmgWR0CwgdUaAFxGdX2UKGgGaAloD0MI5ZfBGJGo67+UhpRSlGgVSzJoFkdAsIGsh7mdRXV9lChoBmgJaA9DCDxsIjMXePW/lIaUUpRoFUsyaBZHQLCCnQswtap1fZQoaAZoCWgPQwjqeqLrwk/+v5SGlFKUaBVLMmgWR0CwgnMABDG+dX2UKGgGaAloD0MI/u+ICtVN9r+UhpRSlGgVSzJoFkdAsIJKSZBsynV9lChoBmgJaA9DCLSOqiaIev2/lIaUUpRoFUsyaBZHQLCCId43WFx1fZQoaAZoCWgPQwjjqNxELS0AwJSGlFKUaBVLMmgWR0CwgxXsXzlLdX2UKGgGaAloD0MIWaSJd4Cn6r+UhpRSlGgVSzJoFkdAsILr8AJb+3V9lChoBmgJaA9DCOZ2L/fJEfy/lIaUUpRoFUsyaBZHQLCCw0sOG0x1fZQoaAZoCWgPQwhCI9i4/l34v5SGlFKUaBVLMmgWR0CwgprbHp8ndX2UKGgGaAloD0MIUYTU7eyrAcCUhpRSlGgVSzJoFkdAsIORTHbRGHV9lChoBmgJaA9DCHtpigCn9/m/lIaUUpRoFUsyaBZHQLCDZ00WM0h1fZQoaAZoCWgPQwggm+RH/Eryv5SGlFKUaBVLMmgWR0Cwgz6JEYwZdX2UKGgGaAloD0MIMH+FzJVB47+UhpRSlGgVSzJoFkdAsIMWHrQgLnV9lChoBmgJaA9DCFk2c0hq4fC/lIaUUpRoFUsyaBZHQLCED/6wdKd1fZQoaAZoCWgPQwjsihnh7QH5v5SGlFKUaBVLMmgWR0Cwg+YGt6omdX2UKGgGaAloD0MI9rLttDUi97+UhpRSlGgVSzJoFkdAsIO9Xq7iAHV9lChoBmgJaA9DCHvZdtoaEQPAlIaUUpRoFUsyaBZHQLCDlO4XoDB1fZQoaAZoCWgPQwi/f/PixFfxv5SGlFKUaBVLMmgWR0CwhIdUbT+edX2UKGgGaAloD0MI4+MTsvNWA8CUhpRSlGgVSzJoFkdAsIRdUIcBEXV9lChoBmgJaA9DCIR+pl63CPO/lIaUUpRoFUsyaBZHQLCENKVII4V1fZQoaAZoCWgPQwi/ZU6XxUTsv5SGlFKUaBVLMmgWR0CwhAw/9pAVdX2UKGgGaAloD0MIFvvL7snD5b+UhpRSlGgVSzJoFkdAsIUCFBY3enV9lChoBmgJaA9DCGJqSx3ktf+/lIaUUpRoFUsyaBZHQLCE2Ay2x6h1fZQoaAZoCWgPQwjABdmyfF3sv5SGlFKUaBVLMmgWR0CwhK9gKF7EdX2UKGgGaAloD0MI1bSLaaZ75r+UhpRSlGgVSzJoFkdAsISG7I1cdHV9lChoBmgJaA9DCBCv6xfshvG/lIaUUpRoFUsyaBZHQLCFg5uZThp1fZQoaAZoCWgPQwiB6EmZ1ND+v5SGlFKUaBVLMmgWR0CwhVmplz2fdX2UKGgGaAloD0MIqJAr9SxIAsCUhpRSlGgVSzJoFkdAsIUw8DB/JHV9lChoBmgJaA9DCD5CzZAqCu6/lIaUUpRoFUsyaBZHQLCFCInBtUJ1fZQoaAZoCWgPQwh56pEGt7Xov5SGlFKUaBVLMmgWR0Cwhf4jGDL9dX2UKGgGaAloD0MI6zpUU5I19L+UhpRSlGgVSzJoFkdAsIXUHIIWxnV9lChoBmgJaA9DCM9OBkfJq+2/lIaUUpRoFUsyaBZHQLCFq4cFQl91fZQoaAZoCWgPQwiWtOIbCh/lv5SGlFKUaBVLMmgWR0CwhYMQumJndX2UKGgGaAloD0MI+gj84ed//r+UhpRSlGgVSzJoFkdAsIZy5H3DenV9lChoBmgJaA9DCCTTodPzrvC/lIaUUpRoFUsyaBZHQLCGSNLUTct1fZQoaAZoCWgPQwjKbJBJRo77v5SGlFKUaBVLMmgWR0CwhiApON5udX2UKGgGaAloD0MI4X7AAwMI7r+UhpRSlGgVSzJoFkdAsIX3uXu3MXV9lChoBmgJaA9DCDdwB+qUx/2/lIaUUpRoFUsyaBZHQLCG7UNayKN1fZQoaAZoCWgPQwhORpVh3E3wv5SGlFKUaBVLMmgWR0CwhsM0+C9RdX2UKGgGaAloD0MIdck4RrKHAMCUhpRSlGgVSzJoFkdAsIaacJ+lTHV9lChoBmgJaA9DCPfmN0w0iP+/lIaUUpRoFUsyaBZHQLCGceCCjDd1fZQoaAZoCWgPQwj8qIb9npjzv5SGlFKUaBVLMmgWR0Cwh1zqfOD8dX2UKGgGaAloD0MIM/s8Rnnm6r+UhpRSlGgVSzJoFkdAsIcy4G2TgXV9lChoBmgJaA9DCC7KbJBJxgDAlIaUUpRoFUsyaBZHQLCHCilSCOF1fZQoaAZoCWgPQwjTad0GtV/3v5SGlFKUaBVLMmgWR0CwhuGt2cJ/dX2UKGgGaAloD0MI3IR7Zd5q8L+UhpRSlGgVSzJoFkdAsIfTTx5LRXV9lChoBmgJaA9DCAg+BitOdfS/lIaUUpRoFUsyaBZHQLCHqUjs2Nx1fZQoaAZoCWgPQwjkgcgiTTz7v5SGlFKUaBVLMmgWR0Cwh4CR4hUzdX2UKGgGaAloD0MI5jxjX7Lx87+UhpRSlGgVSzJoFkdAsIdYEOiFkHV9lChoBmgJaA9DCAcnol9bPwHAlIaUUpRoFUsyaBZHQLCIZreqJdl1fZQoaAZoCWgPQwggXtcv2A3vv5SGlFKUaBVLMmgWR0CwiD0Y0l7ddX2UKGgGaAloD0MIpwTEJFzI6r+UhpRSlGgVSzJoFkdAsIgU46wMY3V9lChoBmgJaA9DCMDN4sXCkADAlIaUUpRoFUsyaBZHQLCH7Nzr/sF1fZQoaAZoCWgPQwhG6j2V017/v5SGlFKUaBVLMmgWR0CwiTV6eGwidX2UKGgGaAloD0MImbwBZr4D6r+UhpRSlGgVSzJoFkdAsIkL2qT8pHV9lChoBmgJaA9DCGIRww5j0vC/lIaUUpRoFUsyaBZHQLCI44//vOR1fZQoaAZoCWgPQwimY84z9qXvv5SGlFKUaBVLMmgWR0CwiLuXmeUZdX2UKGgGaAloD0MI9phIaTZP+b+UhpRSlGgVSzJoFkdAsIoHfCQ9zXV9lChoBmgJaA9DCDsZHCWvTvW/lIaUUpRoFUsyaBZHQLCJ3dj5Kvp1fZQoaAZoCWgPQwgmipC6nT3xv5SGlFKUaBVLMmgWR0CwibWGh24edX2UKGgGaAloD0MIbTgsDfwo8r+UhpRSlGgVSzJoFkdAsImNdX1an3V9lChoBmgJaA9DCK96wDxkKgLAlIaUUpRoFUsyaBZHQLCK2+UyHmB1fZQoaAZoCWgPQwjaIJOMnMX1v5SGlFKUaBVLMmgWR0CwirJWV/tqdX2UKGgGaAloD0MIUKc8uhGW8b+UhpRSlGgVSzJoFkdAsIqKGbkOqnV9lChoBmgJaA9DCJ7uPPGc7fq/lIaUUpRoFUsyaBZHQLCKYhL5AQh1fZQoaAZoCWgPQwiGVFG8ylr0v5SGlFKUaBVLMmgWR0Cwi6rHlwLmdX2UKGgGaAloD0MIvRsLCoOy/L+UhpRSlGgVSzJoFkdAsIuBKvmoznV9lChoBmgJaA9DCHwMVpxqLfq/lIaUUpRoFUsyaBZHQLCLWOUMXrN1fZQoaAZoCWgPQwjsGFdcHFX3v5SGlFKUaBVLMmgWR0CwizDGHYYjdX2UKGgGaAloD0MIZacf1EWK+b+UhpRSlGgVSzJoFkdAsIx3iMo+fXV9lChoBmgJaA9DCJ1LcVXZ9/G/lIaUUpRoFUsyaBZHQLCMTcIqslt1fZQoaAZoCWgPQwhL5ljeVY/9v5SGlFKUaBVLMmgWR0CwjCVklNUPdX2UKGgGaAloD0MIeEFEatpF7L+UhpRSlGgVSzJoFkdAsIv9ISUTtnV9lChoBmgJaA9DCCKNCpxsA/i/lIaUUpRoFUsyaBZHQLCNRJtzjm11fZQoaAZoCWgPQwgG9S1zuuz5v5SGlFKUaBVLMmgWR0CwjRrbtZ3cdX2UKGgGaAloD0MI7nvUX6/w+r+UhpRSlGgVSzJoFkdAsIzyqEOAiHV9lChoBmgJaA9DCMyaWOAruve/lIaUUpRoFUsyaBZHQLCMyp3os7N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}