carlosaguayo commited on
Commit
d6f2477
1 Parent(s): 8f384c6

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 76.07 +/- 92.71
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6e5f34c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6e5f34cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6e5f34d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6e5f34dd0>", "_build": "<function ActorCriticPolicy._build at 0x7fd6e5f34e60>", "forward": "<function ActorCriticPolicy.forward at 0x7fd6e5f34ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6e5f34f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd6e5f3a050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6e5f3a0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6e5f3a170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6e5f3a200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd6e5f78d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651938530.9056904, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABomMb3q6Xg/lpBevRHHUb4xav08OGxpOwAAAAAAAAAAGjoqveG2jrp2/686N7SYNW5dCLujHsy5AACAPwAAgD/qmMy+33OmPIaRKTuvvvs4h0uPPdWXaroAAIA/AACAPxqxMj52bAi8WkOEO9XFPLnqaYO9pwihugAAgD8AAIA/oLszPtZH0D7PLqS9bH9Bvsm8zT0mqLy9AAAAAAAAAACa/IC9KThXut3+ersVSKc4cszNudtACDoAAIA/AACAP8Z3Ob7Olfw+CwrYvSBhWb5NYSi9hHYkvgAAAAAAAAAAxlULv8mRRj4bf3i6jQAcOWYBeL4Mr5c5AACAPwAAgD9NOgy+bJK+Psa9W70qJ3S+ewPhvK/dkb0AAAAAAAAAAM0xGL1c5yG6jtCmO6PnKDdesQY7yJLAugAAgD8AAIA/U2l1virlC70awbW84rHAOVSzfz5z/U89AAAAAAAAAABmsMC97KnouU1wKbvHm4s3GPJOuyNaPLYAAIA/AACAP2bOq71spN4+mtkKux2MRL542Da8zVmnOwAAAAAAAAAAZlJvPdBlgz4jb9G94sAbvvq7dTxu/mE7AAAAAAAAAAAz19c8J2oVPj86EbrDl/W9CVtrPOPQBjwAAAAAAAAAAE35271ci1C6c3SZvDEEUTN457068gs7swAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIERjrG5hJV0CUhpRSlIwBbJRN6AOMAXSUR0B5pO00FbFCdX2UKGgGaAloD0MI7nppigCIWUCUhpRSlGgVTegDaBZHQHm60Xxe9jB1fZQoaAZoCWgPQwjmlettM1NZQJSGlFKUaBVN6ANoFkdAeeXkd3jdYXV9lChoBmgJaA9DCAbzV8hci1VAlIaUUpRoFU3oA2gWR0B58DQhOgxrdX2UKGgGaAloD0MIxvtx++VKV0CUhpRSlGgVTegDaBZHQHn70vCdjG11fZQoaAZoCWgPQwjRkVz+Q8JYQJSGlFKUaBVN6ANoFkdAegtjc2zfJnV9lChoBmgJaA9DCJLLf0i/kGFAlIaUUpRoFU3oA2gWR0B6EsuDjBEbdX2UKGgGaAloD0MIrKjBNAwvXECUhpRSlGgVTegDaBZHQHofHh4t6HF1fZQoaAZoCWgPQwiTAaCKG9tXQJSGlFKUaBVN6ANoFkdAeh/6yjYZmHV9lChoBmgJaA9DCOHTnLzIa1tAlIaUUpRoFU3oA2gWR0B6kNGRV6u5dX2UKGgGaAloD0MIwjBgyVX+WkCUhpRSlGgVTegDaBZHQHqnKubI91V1fZQoaAZoCWgPQwjBpzl5kfhQwJSGlFKUaBVNhgFoFkdAeq4TPjXFtXV9lChoBmgJaA9DCMbf9gSJglpAlIaUUpRoFU3oA2gWR0B6yKE25xzadX2UKGgGaAloD0MILgQ5KGGCV0CUhpRSlGgVTegDaBZHQHrMjgZTAFh1fZQoaAZoCWgPQwgIc7uX+51dQJSGlFKUaBVN6ANoFkdAeturhisnzHV9lChoBmgJaA9DCB9JSQ9DTF5AlIaUUpRoFU3oA2gWR0B68/efqX4TdX2UKGgGaAloD0MISddMvtkkWECUhpRSlGgVTegDaBZHQHr6TDbah6B1fZQoaAZoCWgPQwj0piIVxnpYQJSGlFKUaBVN6ANoFkdAewSrJ8v25HV9lChoBmgJaA9DCGCrBIvDx0HAlIaUUpRoFUvRaBZHQHsGT4tYjjd1fZQoaAZoCWgPQwgMsfojDFFbQJSGlFKUaBVN6ANoFkdAexkE1l5GBnV9lChoBmgJaA9DCIvfFFYq9ErAlIaUUpRoFU05AWgWR0B7MPhfjS5RdX2UKGgGaAloD0MIcLVOXA5LYECUhpRSlGgVTegDaBZHQHtCcZYPoV51fZQoaAZoCWgPQwjDg2bXvVhbQJSGlFKUaBVN6ANoFkdAe00bzK9wm3V9lChoBmgJaA9DCCRh304iPlRAlIaUUpRoFU3oA2gWR0B7abjS5RTCdX2UKGgGaAloD0MIRtEDH4NHXUCUhpRSlGgVTegDaBZHQHtyI8IRh+h1fZQoaAZoCWgPQwhYAb7bPCphQJSGlFKUaBVN6ANoFkdAe3/aq0dBB3V9lChoBmgJaA9DCJpBfGDHtFtAlIaUUpRoFU3oA2gWR0B7gL1zySV4dX2UKGgGaAloD0MIpIgMq3juWkCUhpRSlGgVTegDaBZHQHv1Y7aIval1fZQoaAZoCWgPQwgwEW+dfzJjQJSGlFKUaBVN6ANoFkdAfA0F+/gzg3V9lChoBmgJaA9DCMVTjzS4JGJAlIaUUpRoFU3oA2gWR0B8FCkAPuohdX2UKGgGaAloD0MIsaIG0zCKRsCUhpRSlGgVTUIBaBZHQHwln3+MqBp1fZQoaAZoCWgPQwiQEVDhCPNXQJSGlFKUaBVN6ANoFkdAfC3hi9ZieHV9lChoBmgJaA9DCDOkiuJVElnAlIaUUpRoFU0FAWgWR0B8QPva11GLdX2UKGgGaAloD0MIUWaDTDKMW0CUhpRSlGgVTegDaBZHQHxZCzTnaFp1fZQoaAZoCWgPQwjWi6GcaFtfQJSGlFKUaBVN6ANoFkdAfF8E87p3YHV9lChoBmgJaA9DCBoxs89jYEDAlIaUUpRoFUvnaBZHQHxk3FPznRt1fZQoaAZoCWgPQwg3/G66ZeRWQJSGlFKUaBVN6ANoFkdAfGiJDmbLEHV9lChoBmgJaA9DCGoV/aGZbltAlIaUUpRoFU3oA2gWR0B8afJuEVWTdX2UKGgGaAloD0MI7dKGw9JaXUCUhpRSlGgVTegDaBZHQHx6AIhQm/p1fZQoaAZoCWgPQwgd44qLowhfQJSGlFKUaBVN6ANoFkdAfI82OQyRCHV9lChoBmgJaA9DCBR2UfTAAF5AlIaUUpRoFU3oA2gWR0B8ngVQAMlUdX2UKGgGaAloD0MI8tHijGFjXECUhpRSlGgVTegDaBZHQHynOQ6p5u91fZQoaAZoCWgPQwgH7dXHQ3dbQJSGlFKUaBVN6ANoFkdAfMHDVYp2EHV9lChoBmgJaA9DCAqBXOJIT2FAlIaUUpRoFU3oA2gWR0B8yaPLgXMydX2UKGgGaAloD0MIB0Dc1auFV0CUhpRSlGgVTegDaBZHQHzYLncL0Bh1fZQoaAZoCWgPQwhIUtLD0EoUQJSGlFKUaBVNDQFoFkdAfOksKLKmsXV9lChoBmgJaA9DCFOynIRSR2BAlIaUUpRoFU3oA2gWR0B9aXzAeq7zdX2UKGgGaAloD0MI7G0zFeKEXkCUhpRSlGgVTegDaBZHQH1xuaz/p+t1fZQoaAZoCWgPQwgoDTUKSQYwwJSGlFKUaBVNPgFoFkdAfYZdKNAC4nV9lChoBmgJaA9DCC0nofQFoWBAlIaUUpRoFU3oA2gWR0B9kGAoXsPbdX2UKGgGaAloD0MIpzy6ERaZW0CUhpRSlGgVTegDaBZHQH2mcu8K5TZ1fZQoaAZoCWgPQwglk1M7w/ZfQJSGlFKUaBVN6ANoFkdAfcF8KG+K0nV9lChoBmgJaA9DCFnC2hg7jVxAlIaUUpRoFU3oA2gWR0B9x+08eS0TdX2UKGgGaAloD0MIZDvfT43SXECUhpRSlGgVTegDaBZHQH3OPA9FF2F1fZQoaAZoCWgPQwg18Q7wpNNOQJSGlFKUaBVN6ANoFkdAfdH7VawD/3V9lChoBmgJaA9DCAVOtoE7M1pAlIaUUpRoFU3oA2gWR0B902MrEtNBdX2UKGgGaAloD0MI1eyBVmBMV0CUhpRSlGgVTegDaBZHQH3it2s7uD11fZQoaAZoCWgPQwjrOlRTkl0nQJSGlFKUaBVNRgFoFkdAfemUedTYNHV9lChoBmgJaA9DCHh7EALyKl5AlIaUUpRoFU3oA2gWR0B99d4KQaJidX2UKGgGaAloD0MINzRlpx8sVUCUhpRSlGgVTegDaBZHQH4KLn9vS+h1fZQoaAZoCWgPQwhKJTyh11c4QJSGlFKUaBVNOAFoFkdAfhYbD/EOy3V9lChoBmgJaA9DCLkXmBWKRmRAlIaUUpRoFU3oA2gWR0B+IYI4VARkdX2UKGgGaAloD0MIz/V9OEjANcCUhpRSlGgVTQIBaBZHQH4kHjp9qlB1fZQoaAZoCWgPQwjqz36kiJtfQJSGlFKUaBVN6ANoFkdAfihbPyCnP3V9lChoBmgJaA9DCCoDB7R0NFlAlIaUUpRoFU3oA2gWR0B+QkgjhUBGdX2UKGgGaAloD0MIo3N+iuNLX0CUhpRSlGgVTegDaBZHQH65KCL/CIl1fZQoaAZoCWgPQwgF/YUeMQRiQJSGlFKUaBVN6ANoFkdAfr+9KVY6n3V9lChoBmgJaA9DCLTLtz6sSGRAlIaUUpRoFU3oA2gWR0B+0EyzollcdX2UKGgGaAloD0MILlT+tbw1YECUhpRSlGgVTegDaBZHQH7tfmHP/rB1fZQoaAZoCWgPQwicwHRatx9RQJSGlFKUaBVN6ANoFkdAfwdDGcWj5HV9lChoBmgJaA9DCLlTOlj/xmNAlIaUUpRoFU3oA2gWR0B/Dad1+y7gdX2UKGgGaAloD0MIrkZ2pWXJW0CUhpRSlGgVTegDaBZHQH8T/9DQZ4x1fZQoaAZoCWgPQwigpSvYRjVfQJSGlFKUaBVN6ANoFkdAfxlco6S1V3V9lChoBmgJaA9DCNwpHaz/YxzAlIaUUpRoFU1lAWgWR0B/HdSYPXkHdX2UKGgGaAloD0MIjQxyF2EbYkCUhpRSlGgVTegDaBZHQH8pvNFBppN1fZQoaAZoCWgPQwjs3LQZp7pfQJSGlFKUaBVN6ANoFkdAfz46uGKyfXV9lChoBmgJaA9DCC1BRkCF40dAlIaUUpRoFU3oA2gWR0B/VlYwIt17dX2UKGgGaAloD0MId76fGi9tLkCUhpRSlGgVTUMBaBZHQH9WoMF2V3V1fZQoaAZoCWgPQwgjaqLPRzhVQJSGlFKUaBVN6ANoFkdAf2Oef7Jnx3V9lChoBmgJaA9DCET67evA6RNAlIaUUpRoFU00AWgWR0B/aSVnmJWOdX2UKGgGaAloD0MI7pV5q661XkCUhpRSlGgVTegDaBZHQH9vKz/p+tt1fZQoaAZoCWgPQwg5fqg04pFiQJSGlFKUaBVN6ANoFkdAf3GinpB5X3V9lChoBmgJaA9DCIelgR/VpVdAlIaUUpRoFU3oA2gWR0B/dbisGPgfdX2UKGgGaAloD0MIptJPOLthYECUhpRSlGgVTegDaBZHQH+P7qhUR4B1fZQoaAZoCWgPQwga4e1BiIdmQJSGlFKUaBVNjgJoFkdAgAB36Q/5cnV9lChoBmgJaA9DCK702mwsw2dAlIaUUpRoFU2yAmgWR0CAAkAWi1zAdX2UKGgGaAloD0MI2ZdsPNguXkCUhpRSlGgVTegDaBZHQIAIhDqnm7t1fZQoaAZoCWgPQwjTEcDNYmpiQJSGlFKUaBVNswFoFkdAgAkXM6ij+XV9lChoBmgJaA9DCNFbPLxnfWRAlIaUUpRoFU3oA2gWR0CAEOgpSaVldX2UKGgGaAloD0MIM/lmmxtXW0CUhpRSlGgVTegDaBZHQIAfpvitJWh1fZQoaAZoCWgPQwgD0v4HWOtWQJSGlFKUaBVN6ANoFkdAgDkaYVqN63V9lChoBmgJaA9DCKKcaFchgFdAlIaUUpRoFU3oA2gWR0CARTw3HaN/dX2UKGgGaAloD0MIbuAO1CnLWECUhpRSlGgVTegDaBZHQIBUArFwT/R1fZQoaAZoCWgPQwg1mfG20r5bQJSGlFKUaBVN6ANoFkdAgGSX8GcFyXV9lChoBmgJaA9DCBoUzQNYVWRAlIaUUpRoFU3oA2gWR0CAbR1Tzd1udX2UKGgGaAloD0MIzCiWW1p8YECUhpRSlGgVTegDaBZHQIBwiOYIBzV1fZQoaAZoCWgPQwgFvw0xXiRfQJSGlFKUaBVN6ANoFkdAgHQK3EyckXV9lChoBmgJaA9DCLHc0mpILGNAlIaUUpRoFU3oA2gWR0CAdWgOjIq9dX2UKGgGaAloD0MIyjZwB+oaWECUhpRSlGgVTegDaBZHQIB3roMa0hN1fZQoaAZoCWgPQwiyvKseMPJdQJSGlFKUaBVN6ANoFkdAgIS+Zw4sE3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:942c2eb120bb5aaed82ce3684319bfb4cbf2c2dd27efafc677ba04a8d3ebc7d0
3
+ size 144048
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6e5f34c20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6e5f34cb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6e5f34d40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6e5f34dd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd6e5f34e60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd6e5f34ef0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6e5f34f80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd6e5f3a050>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6e5f3a0e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6e5f3a170>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6e5f3a200>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd6e5f78d80>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651938530.9056904,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABomMb3q6Xg/lpBevRHHUb4xav08OGxpOwAAAAAAAAAAGjoqveG2jrp2/686N7SYNW5dCLujHsy5AACAPwAAgD/qmMy+33OmPIaRKTuvvvs4h0uPPdWXaroAAIA/AACAPxqxMj52bAi8WkOEO9XFPLnqaYO9pwihugAAgD8AAIA/oLszPtZH0D7PLqS9bH9Bvsm8zT0mqLy9AAAAAAAAAACa/IC9KThXut3+ersVSKc4cszNudtACDoAAIA/AACAP8Z3Ob7Olfw+CwrYvSBhWb5NYSi9hHYkvgAAAAAAAAAAxlULv8mRRj4bf3i6jQAcOWYBeL4Mr5c5AACAPwAAgD9NOgy+bJK+Psa9W70qJ3S+ewPhvK/dkb0AAAAAAAAAAM0xGL1c5yG6jtCmO6PnKDdesQY7yJLAugAAgD8AAIA/U2l1virlC70awbW84rHAOVSzfz5z/U89AAAAAAAAAABmsMC97KnouU1wKbvHm4s3GPJOuyNaPLYAAIA/AACAP2bOq71spN4+mtkKux2MRL542Da8zVmnOwAAAAAAAAAAZlJvPdBlgz4jb9G94sAbvvq7dTxu/mE7AAAAAAAAAAAz19c8J2oVPj86EbrDl/W9CVtrPOPQBjwAAAAAAAAAAE35271ci1C6c3SZvDEEUTN457068gs7swAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIERjrG5hJV0CUhpRSlIwBbJRN6AOMAXSUR0B5pO00FbFCdX2UKGgGaAloD0MI7nppigCIWUCUhpRSlGgVTegDaBZHQHm60Xxe9jB1fZQoaAZoCWgPQwjmlettM1NZQJSGlFKUaBVN6ANoFkdAeeXkd3jdYXV9lChoBmgJaA9DCAbzV8hci1VAlIaUUpRoFU3oA2gWR0B58DQhOgxrdX2UKGgGaAloD0MIxvtx++VKV0CUhpRSlGgVTegDaBZHQHn70vCdjG11fZQoaAZoCWgPQwjRkVz+Q8JYQJSGlFKUaBVN6ANoFkdAegtjc2zfJnV9lChoBmgJaA9DCJLLf0i/kGFAlIaUUpRoFU3oA2gWR0B6EsuDjBEbdX2UKGgGaAloD0MIrKjBNAwvXECUhpRSlGgVTegDaBZHQHofHh4t6HF1fZQoaAZoCWgPQwiTAaCKG9tXQJSGlFKUaBVN6ANoFkdAeh/6yjYZmHV9lChoBmgJaA9DCOHTnLzIa1tAlIaUUpRoFU3oA2gWR0B6kNGRV6u5dX2UKGgGaAloD0MIwjBgyVX+WkCUhpRSlGgVTegDaBZHQHqnKubI91V1fZQoaAZoCWgPQwjBpzl5kfhQwJSGlFKUaBVNhgFoFkdAeq4TPjXFtXV9lChoBmgJaA9DCMbf9gSJglpAlIaUUpRoFU3oA2gWR0B6yKE25xzadX2UKGgGaAloD0MILgQ5KGGCV0CUhpRSlGgVTegDaBZHQHrMjgZTAFh1fZQoaAZoCWgPQwgIc7uX+51dQJSGlFKUaBVN6ANoFkdAeturhisnzHV9lChoBmgJaA9DCB9JSQ9DTF5AlIaUUpRoFU3oA2gWR0B68/efqX4TdX2UKGgGaAloD0MISddMvtkkWECUhpRSlGgVTegDaBZHQHr6TDbah6B1fZQoaAZoCWgPQwj0piIVxnpYQJSGlFKUaBVN6ANoFkdAewSrJ8v25HV9lChoBmgJaA9DCGCrBIvDx0HAlIaUUpRoFUvRaBZHQHsGT4tYjjd1fZQoaAZoCWgPQwgMsfojDFFbQJSGlFKUaBVN6ANoFkdAexkE1l5GBnV9lChoBmgJaA9DCIvfFFYq9ErAlIaUUpRoFU05AWgWR0B7MPhfjS5RdX2UKGgGaAloD0MIcLVOXA5LYECUhpRSlGgVTegDaBZHQHtCcZYPoV51fZQoaAZoCWgPQwjDg2bXvVhbQJSGlFKUaBVN6ANoFkdAe00bzK9wm3V9lChoBmgJaA9DCCRh304iPlRAlIaUUpRoFU3oA2gWR0B7abjS5RTCdX2UKGgGaAloD0MIRtEDH4NHXUCUhpRSlGgVTegDaBZHQHtyI8IRh+h1fZQoaAZoCWgPQwhYAb7bPCphQJSGlFKUaBVN6ANoFkdAe3/aq0dBB3V9lChoBmgJaA9DCJpBfGDHtFtAlIaUUpRoFU3oA2gWR0B7gL1zySV4dX2UKGgGaAloD0MIpIgMq3juWkCUhpRSlGgVTegDaBZHQHv1Y7aIval1fZQoaAZoCWgPQwgwEW+dfzJjQJSGlFKUaBVN6ANoFkdAfA0F+/gzg3V9lChoBmgJaA9DCMVTjzS4JGJAlIaUUpRoFU3oA2gWR0B8FCkAPuohdX2UKGgGaAloD0MIsaIG0zCKRsCUhpRSlGgVTUIBaBZHQHwln3+MqBp1fZQoaAZoCWgPQwiQEVDhCPNXQJSGlFKUaBVN6ANoFkdAfC3hi9ZieHV9lChoBmgJaA9DCDOkiuJVElnAlIaUUpRoFU0FAWgWR0B8QPva11GLdX2UKGgGaAloD0MIUWaDTDKMW0CUhpRSlGgVTegDaBZHQHxZCzTnaFp1fZQoaAZoCWgPQwjWi6GcaFtfQJSGlFKUaBVN6ANoFkdAfF8E87p3YHV9lChoBmgJaA9DCBoxs89jYEDAlIaUUpRoFUvnaBZHQHxk3FPznRt1fZQoaAZoCWgPQwg3/G66ZeRWQJSGlFKUaBVN6ANoFkdAfGiJDmbLEHV9lChoBmgJaA9DCGoV/aGZbltAlIaUUpRoFU3oA2gWR0B8afJuEVWTdX2UKGgGaAloD0MI7dKGw9JaXUCUhpRSlGgVTegDaBZHQHx6AIhQm/p1fZQoaAZoCWgPQwgd44qLowhfQJSGlFKUaBVN6ANoFkdAfI82OQyRCHV9lChoBmgJaA9DCBR2UfTAAF5AlIaUUpRoFU3oA2gWR0B8ngVQAMlUdX2UKGgGaAloD0MI8tHijGFjXECUhpRSlGgVTegDaBZHQHynOQ6p5u91fZQoaAZoCWgPQwgH7dXHQ3dbQJSGlFKUaBVN6ANoFkdAfMHDVYp2EHV9lChoBmgJaA9DCAqBXOJIT2FAlIaUUpRoFU3oA2gWR0B8yaPLgXMydX2UKGgGaAloD0MIB0Dc1auFV0CUhpRSlGgVTegDaBZHQHzYLncL0Bh1fZQoaAZoCWgPQwhIUtLD0EoUQJSGlFKUaBVNDQFoFkdAfOksKLKmsXV9lChoBmgJaA9DCFOynIRSR2BAlIaUUpRoFU3oA2gWR0B9aXzAeq7zdX2UKGgGaAloD0MI7G0zFeKEXkCUhpRSlGgVTegDaBZHQH1xuaz/p+t1fZQoaAZoCWgPQwgoDTUKSQYwwJSGlFKUaBVNPgFoFkdAfYZdKNAC4nV9lChoBmgJaA9DCC0nofQFoWBAlIaUUpRoFU3oA2gWR0B9kGAoXsPbdX2UKGgGaAloD0MIpzy6ERaZW0CUhpRSlGgVTegDaBZHQH2mcu8K5TZ1fZQoaAZoCWgPQwglk1M7w/ZfQJSGlFKUaBVN6ANoFkdAfcF8KG+K0nV9lChoBmgJaA9DCFnC2hg7jVxAlIaUUpRoFU3oA2gWR0B9x+08eS0TdX2UKGgGaAloD0MIZDvfT43SXECUhpRSlGgVTegDaBZHQH3OPA9FF2F1fZQoaAZoCWgPQwg18Q7wpNNOQJSGlFKUaBVN6ANoFkdAfdH7VawD/3V9lChoBmgJaA9DCAVOtoE7M1pAlIaUUpRoFU3oA2gWR0B902MrEtNBdX2UKGgGaAloD0MI1eyBVmBMV0CUhpRSlGgVTegDaBZHQH3it2s7uD11fZQoaAZoCWgPQwjrOlRTkl0nQJSGlFKUaBVNRgFoFkdAfemUedTYNHV9lChoBmgJaA9DCHh7EALyKl5AlIaUUpRoFU3oA2gWR0B99d4KQaJidX2UKGgGaAloD0MINzRlpx8sVUCUhpRSlGgVTegDaBZHQH4KLn9vS+h1fZQoaAZoCWgPQwhKJTyh11c4QJSGlFKUaBVNOAFoFkdAfhYbD/EOy3V9lChoBmgJaA9DCLkXmBWKRmRAlIaUUpRoFU3oA2gWR0B+IYI4VARkdX2UKGgGaAloD0MIz/V9OEjANcCUhpRSlGgVTQIBaBZHQH4kHjp9qlB1fZQoaAZoCWgPQwjqz36kiJtfQJSGlFKUaBVN6ANoFkdAfihbPyCnP3V9lChoBmgJaA9DCCoDB7R0NFlAlIaUUpRoFU3oA2gWR0B+QkgjhUBGdX2UKGgGaAloD0MIo3N+iuNLX0CUhpRSlGgVTegDaBZHQH65KCL/CIl1fZQoaAZoCWgPQwgF/YUeMQRiQJSGlFKUaBVN6ANoFkdAfr+9KVY6n3V9lChoBmgJaA9DCLTLtz6sSGRAlIaUUpRoFU3oA2gWR0B+0EyzollcdX2UKGgGaAloD0MILlT+tbw1YECUhpRSlGgVTegDaBZHQH7tfmHP/rB1fZQoaAZoCWgPQwicwHRatx9RQJSGlFKUaBVN6ANoFkdAfwdDGcWj5HV9lChoBmgJaA9DCLlTOlj/xmNAlIaUUpRoFU3oA2gWR0B/Dad1+y7gdX2UKGgGaAloD0MIrkZ2pWXJW0CUhpRSlGgVTegDaBZHQH8T/9DQZ4x1fZQoaAZoCWgPQwigpSvYRjVfQJSGlFKUaBVN6ANoFkdAfxlco6S1V3V9lChoBmgJaA9DCNwpHaz/YxzAlIaUUpRoFU1lAWgWR0B/HdSYPXkHdX2UKGgGaAloD0MIjQxyF2EbYkCUhpRSlGgVTegDaBZHQH8pvNFBppN1fZQoaAZoCWgPQwjs3LQZp7pfQJSGlFKUaBVN6ANoFkdAfz46uGKyfXV9lChoBmgJaA9DCC1BRkCF40dAlIaUUpRoFU3oA2gWR0B/VlYwIt17dX2UKGgGaAloD0MId76fGi9tLkCUhpRSlGgVTUMBaBZHQH9WoMF2V3V1fZQoaAZoCWgPQwgjaqLPRzhVQJSGlFKUaBVN6ANoFkdAf2Oef7Jnx3V9lChoBmgJaA9DCET67evA6RNAlIaUUpRoFU00AWgWR0B/aSVnmJWOdX2UKGgGaAloD0MI7pV5q661XkCUhpRSlGgVTegDaBZHQH9vKz/p+tt1fZQoaAZoCWgPQwg5fqg04pFiQJSGlFKUaBVN6ANoFkdAf3GinpB5X3V9lChoBmgJaA9DCIelgR/VpVdAlIaUUpRoFU3oA2gWR0B/dbisGPgfdX2UKGgGaAloD0MIptJPOLthYECUhpRSlGgVTegDaBZHQH+P7qhUR4B1fZQoaAZoCWgPQwga4e1BiIdmQJSGlFKUaBVNjgJoFkdAgAB36Q/5cnV9lChoBmgJaA9DCK702mwsw2dAlIaUUpRoFU2yAmgWR0CAAkAWi1zAdX2UKGgGaAloD0MI2ZdsPNguXkCUhpRSlGgVTegDaBZHQIAIhDqnm7t1fZQoaAZoCWgPQwjTEcDNYmpiQJSGlFKUaBVNswFoFkdAgAkXM6ij+XV9lChoBmgJaA9DCNFbPLxnfWRAlIaUUpRoFU3oA2gWR0CAEOgpSaVldX2UKGgGaAloD0MIM/lmmxtXW0CUhpRSlGgVTegDaBZHQIAfpvitJWh1fZQoaAZoCWgPQwgD0v4HWOtWQJSGlFKUaBVN6ANoFkdAgDkaYVqN63V9lChoBmgJaA9DCKKcaFchgFdAlIaUUpRoFU3oA2gWR0CARTw3HaN/dX2UKGgGaAloD0MIbuAO1CnLWECUhpRSlGgVTegDaBZHQIBUArFwT/R1fZQoaAZoCWgPQwg1mfG20r5bQJSGlFKUaBVN6ANoFkdAgGSX8GcFyXV9lChoBmgJaA9DCBoUzQNYVWRAlIaUUpRoFU3oA2gWR0CAbR1Tzd1udX2UKGgGaAloD0MIzCiWW1p8YECUhpRSlGgVTegDaBZHQIBwiOYIBzV1fZQoaAZoCWgPQwgFvw0xXiRfQJSGlFKUaBVN6ANoFkdAgHQK3EyckXV9lChoBmgJaA9DCLHc0mpILGNAlIaUUpRoFU3oA2gWR0CAdWgOjIq9dX2UKGgGaAloD0MIyjZwB+oaWECUhpRSlGgVTegDaBZHQIB3roMa0hN1fZQoaAZoCWgPQwiyvKseMPJdQJSGlFKUaBVN6ANoFkdAgIS+Zw4sE3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b35b4c400884ce3ba3988a5e9fe39f2c194cabc76b70876be76939c2527c661c
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4400f935d07c48ea14429d2589cb7387e4fc0766e4e63bd260093173b35ae453
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69a2973055a713374fb85a5b2174cd64a68fbaf3c6ece48b5e94db4fa19a035b
3
+ size 250358
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 76.07367606601005, "std_reward": 92.71318664740579, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T15:58:22.722607"}