carlos23t commited on
Commit
5cc0ac7
·
1 Parent(s): 48f8a9b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.65 +/- 19.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0301f7b700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0301f7b790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0301f7b820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0301f7b8b0>", "_build": "<function ActorCriticPolicy._build at 0x7f0301f7b940>", "forward": "<function ActorCriticPolicy.forward at 0x7f0301f7b9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0301f7ba60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0301f7baf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0301f7bb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0301f7bc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0301f7bca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0301f7bd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0301f7da00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682396933760213653, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGPkt76rjyA/JPgjPsscj75kFg++/wQguwAAAAAAAAAA5vCtvqh23D6k7QQ+ATHCvrCYwb0Cohk+AAAAAAAAAAANFom9tE1xPxBqer3jlLO+8aWevQLgF70AAAAAAAAAAA2mgr02wrA+05TNO0AXnL6gZ7A8c6UUvQAAAAAAAAAAfaPGvvt2QT/m5zk+SdKsvguT+71bCXQ9AAAAAAAAAAAA9Nk9fFKnP8Jpsj7NjAq/Q/4JPprXxT0AAAAAAAAAAIAuir3kp0Q/wPRiPHfXq75nFpu6CjsuPQAAAAAAAAAARpIXvggJXz+Of1O+ym6pviWeer323Ty9AAAAAAAAAADAZIO9j/YHuqF/TDO6jBEwoSs+O64FxLMAAIA/AACAPwDkp73lpQ4+Qxzuup65Vb5E1Uq92W8oPQAAAAAAAAAAZjVlPXP+hj/K+h89+T7avv5fkT2ZHT89AAAAAAAAAADA2689Keg6uv7UgrulN7w4p7VYuoijCDoAAIA/AAAAALPp171SbI+7uGNePDyWkjyFt+G8VcZ5PQAAgD8AAAAAzSMlvcP5PrqiyFg3q8toMdFdFTqwoX22AACAPwAAgD+OYY++UKKbP57cD78kPtG+zBWXvknDy70AAAAAAAAAANC/sL6IlRc/PejEPRzQjr7QsK29blHgPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5E7pYD30ckCUhpRSlIwBbJRNTwGMAXSUR0CVe1BshxHYdX2UKGgGaAloD0MI3uNMEzb/bECUhpRSlGgVTU4BaBZHQJV8IsK9f1J1fZQoaAZoCWgPQwiwOJz5FQ1wQJSGlFKUaBVNVQFoFkdAlXzagElme3V9lChoBmgJaA9DCN4BnrRwVXJAlIaUUpRoFU0oAWgWR0CVfiDmr8zidX2UKGgGaAloD0MIHxK+9zdPb0CUhpRSlGgVTTEBaBZHQJV+/2QGOdZ1fZQoaAZoCWgPQwgqkUQvo7JwQJSGlFKUaBVNJgFoFkdAlX+EFfReC3V9lChoBmgJaA9DCAQ8aeEynW5AlIaUUpRoFU07AWgWR0CVf7zjm0VrdX2UKGgGaAloD0MIRzzZzUxScECUhpRSlGgVTd4BaBZHQJWAW4UeuFJ1fZQoaAZoCWgPQwhTXFX2XVhuQJSGlFKUaBVNOQFoFkdAlYCiqU/wAnV9lChoBmgJaA9DCNbJGYq7GHBAlIaUUpRoFU1dAWgWR0CVgYl+EytWdX2UKGgGaAloD0MI+62dKMn3cECUhpRSlGgVTQ4BaBZHQJWCdWyTpxF1fZQoaAZoCWgPQwjIXYQpyuVxQJSGlFKUaBVNOAFoFkdAlYOUiUxEfHV9lChoBmgJaA9DCC8UsB3MTHFAlIaUUpRoFU0rAWgWR0CVg5QdjoZAdX2UKGgGaAloD0MIGhh5WdMxcECUhpRSlGgVTQQBaBZHQJWDm0ojOcF1fZQoaAZoCWgPQwggf2lR30dwQJSGlFKUaBVNDAFoFkdAlYROTq0MPXV9lChoBmgJaA9DCD51rFJ6g21AlIaUUpRoFU0LAWgWR0CVhRHhCMP0dX2UKGgGaAloD0MIwY7/AkEeckCUhpRSlGgVTXYBaBZHQJWFknWrfch1fZQoaAZoCWgPQwgzpmCNs6ltQJSGlFKUaBVNFgFoFkdAlYYDfJmuknV9lChoBmgJaA9DCNF14QfnlnBAlIaUUpRoFU2pA2gWR0CVhosr/bTMdX2UKGgGaAloD0MIEFoPX2ZKc0CUhpRSlGgVTTEBaBZHQJWJgdLg4wR1fZQoaAZoCWgPQwjac5maBBhwQJSGlFKUaBVNGwFoFkdAlYmhxkupTHV9lChoBmgJaA9DCN/6sN4oiG5AlIaUUpRoFU0rAWgWR0CVipBOHnEEdX2UKGgGaAloD0MIhzYAG1BDcECUhpRSlGgVTXUBaBZHQJWKovAXVLB1fZQoaAZoCWgPQwjkMJi/QrJxQJSGlFKUaBVNHAFoFkdAlYr50nw5N3V9lChoBmgJaA9DCKbuyi4YMklAlIaUUpRoFUu6aBZHQJWLYHMUypJ1fZQoaAZoCWgPQwhenznr01NxQJSGlFKUaBVNhwFoFkdAlYwR2GIsRXV9lChoBmgJaA9DCCMT8GskQW5AlIaUUpRoFU0UAWgWR0CVjO+tKZlWdX2UKGgGaAloD0MI/AEPDCDwa0CUhpRSlGgVTT0BaBZHQJWNKinHead1fZQoaAZoCWgPQwg42QbugG9wQJSGlFKUaBVNIgFoFkdAlY1fwRXfZXV9lChoBmgJaA9DCEAv3LnwIXBAlIaUUpRoFU2dAWgWR0CVjXs0pEx7dX2UKGgGaAloD0MI6bevAyfmckCUhpRSlGgVTSwBaBZHQJWNpgVoHs11fZQoaAZoCWgPQwgMdy6MdOFwQJSGlFKUaBVNSgFoFkdAlY8TNt65XnV9lChoBmgJaA9DCGB3uvMEN3BAlIaUUpRoFU0aAWgWR0CVj9b6guh9dX2UKGgGaAloD0MIEHUfgFRQbUCUhpRSlGgVTWcBaBZHQJWRH/6wdKd1fZQoaAZoCWgPQwhI4uXpnOdxQJSGlFKUaBVNcgFoFkdAlZH3qzJIUnV9lChoBmgJaA9DCLX5f9WRh3BAlIaUUpRoFU0HAWgWR0CVkrx/d69kdX2UKGgGaAloD0MI7dgIxOtScECUhpRSlGgVTQsBaBZHQJWTSwu/UON1fZQoaAZoCWgPQwiV1AloojpyQJSGlFKUaBVNGQFoFkdAlZNn/o7muHV9lChoBmgJaA9DCDOK5ZZWkm9AlIaUUpRoFU0RAWgWR0CVk9jc2zfKdX2UKGgGaAloD0MIQ6uTMxTLcECUhpRSlGgVTWIBaBZHQJWU6tuDSPV1fZQoaAZoCWgPQwiEmiFVlHdxQJSGlFKUaBVNIwFoFkdAlZUf9Hc1wnV9lChoBmgJaA9DCPksz4M75mxAlIaUUpRoFU0HAWgWR0CVqhOH31zydX2UKGgGaAloD0MIW7QAbSv0cECUhpRSlGgVTRYBaBZHQJWqcxBVuJl1fZQoaAZoCWgPQwgZWTLHslZwQJSGlFKUaBVNhgFoFkdAlarVmvnr6nV9lChoBmgJaA9DCH5v0589xHJAlIaUUpRoFU0nAWgWR0CVquP3i704dX2UKGgGaAloD0MIMdEgBc8jbkCUhpRSlGgVTR0BaBZHQJWrLgvUSZl1fZQoaAZoCWgPQwgHmWTk7HpwQJSGlFKUaBVNJAFoFkdAlaux59mYjXV9lChoBmgJaA9DCNSbUfPVsnBAlIaUUpRoFU0LAWgWR0CVrXQL/jsEdX2UKGgGaAloD0MIzhySWqjBb0CUhpRSlGgVTSkBaBZHQJWtm+TNdJJ1fZQoaAZoCWgPQwjwTdNnhwJwQJSGlFKUaBVNBgFoFkdAla5qyrxRVXV9lChoBmgJaA9DCFiOkIG8Am9AlIaUUpRoFU0MAWgWR0CVr0vzOHFhdX2UKGgGaAloD0MIkNlZ9M7sbkCUhpRSlGgVTQIBaBZHQJWwO9h7Vrh1fZQoaAZoCWgPQwjp0r8klSBsQJSGlFKUaBVNIwFoFkdAlbDM+V1OkHV9lChoBmgJaA9DCImYEkm0dHBAlIaUUpRoFU0FAWgWR0CVsPdMj/uLdX2UKGgGaAloD0MIC0eQSjGAb0CUhpRSlGgVTQMBaBZHQJWx7FMqSYB1fZQoaAZoCWgPQwj2evfH+25yQJSGlFKUaBVNQAFoFkdAlbJq0tyxRnV9lChoBmgJaA9DCOljPiBQZHBAlIaUUpRoFU0XAWgWR0CVssa11GLDdX2UKGgGaAloD0MImrUUkHYzbkCUhpRSlGgVTQwBaBZHQJWzn0Gu9vl1fZQoaAZoCWgPQwhksOJU6z1yQJSGlFKUaBVNAQFoFkdAlbO8YQ8OkXV9lChoBmgJaA9DCKZ8CKrGm29AlIaUUpRoFU0gAWgWR0CVtALrX18LdX2UKGgGaAloD0MIq5Se6eWockCUhpRSlGgVTSkBaBZHQJW0UoG6f8N1fZQoaAZoCWgPQwis4LchRjRuQJSGlFKUaBVNRwFoFkdAlbSreMyaeHV9lChoBmgJaA9DCIv5uaEpIHNAlIaUUpRoFU1RAWgWR0CVtTCHymQ9dX2UKGgGaAloD0MIkZvhBnwwcUCUhpRSlGgVTQ8BaBZHQJW1t9oexOd1fZQoaAZoCWgPQwitNZTaC1RvQJSGlFKUaBVNHQFoFkdAlbZFK02LpHV9lChoBmgJaA9DCKxT5XvGVG9AlIaUUpRoFU0VAWgWR0CVtukWhysCdX2UKGgGaAloD0MIRgiPNk45ckCUhpRSlGgVTQoBaBZHQJW3fibUgB91fZQoaAZoCWgPQwhkP4uliHxxQJSGlFKUaBVNAAFoFkdAlbieJpFkQXV9lChoBmgJaA9DCH7Er1gDAnBAlIaUUpRoFU0SAWgWR0CVuVz+m3vydX2UKGgGaAloD0MIQx8sY4O6cECUhpRSlGgVS/5oFkdAlbmthJAdGXV9lChoBmgJaA9DCN2adFuisHBAlIaUUpRoFU1BAWgWR0CVuj/sE7nxdX2UKGgGaAloD0MIkUPEzSnxcUCUhpRSlGgVTQUBaBZHQJW6apWFN+N1fZQoaAZoCWgPQwj5wI7/wuNxQJSGlFKUaBVNAQFoFkdAlbucKXv6THV9lChoBmgJaA9DCMnJxK1CJnBAlIaUUpRoFU0ZAWgWR0CVvM7Dl5nldX2UKGgGaAloD0MIUgslk5O9cUCUhpRSlGgVTRcBaBZHQJW9I2OyVwB1fZQoaAZoCWgPQwgLCK2Hr69wQJSGlFKUaBVNDgFoFkdAlb1BXnyNGXV9lChoBmgJaA9DCGBXk6ds1XBAlIaUUpRoFU0LAWgWR0CVvlsT37DVdX2UKGgGaAloD0MIoKcBgyQecUCUhpRSlGgVTRoBaBZHQJW/lTisGPh1fZQoaAZoCWgPQwh/Z3v0RrRyQJSGlFKUaBVNRgFoFkdAlb/SX6ZYxXV9lChoBmgJaA9DCFSLiGLyzXFAlIaUUpRoFU2JAWgWR0CVwGJJXhfjdX2UKGgGaAloD0MIyuL+I1PicUCUhpRSlGgVTQMBaBZHQJXAbAHmig11fZQoaAZoCWgPQwgstklF4ypxQJSGlFKUaBVNrgFoFkdAlcDIPPLPlnV9lChoBmgJaA9DCIl+bf00T3BAlIaUUpRoFUv4aBZHQJXB5AmiQDF1fZQoaAZoCWgPQwgGnRA6qGJyQJSGlFKUaBVNDgFoFkdAlcHkeIVM23V9lChoBmgJaA9DCDNv1XXobXBAlIaUUpRoFU0AAWgWR0CVwmxJNCZ4dX2UKGgGaAloD0MIDf/pBgrha0CUhpRSlGgVTXEBaBZHQJXDG9lEqlR1fZQoaAZoCWgPQwjhtOBFX89AQJSGlFKUaBVL3mgWR0CVwxvrnkksdX2UKGgGaAloD0MIVix+U1jIcECUhpRSlGgVTQYBaBZHQJXDPhn8Koh1fZQoaAZoCWgPQwjU00fgT4JyQJSGlFKUaBVNDQFoFkdAlcVHdweeWnV9lChoBmgJaA9DCG+6ZYe4PnFAlIaUUpRoFU0hAWgWR0CVxk0tRNypdX2UKGgGaAloD0MIaRzqd2E0cECUhpRSlGgVTTABaBZHQJXGsZ4wAVB1fZQoaAZoCWgPQwgX00z3utVvQJSGlFKUaBVNiwFoFkdAlccAGnn+ynV9lChoBmgJaA9DCE1mvK00JnBAlIaUUpRoFU0ZAWgWR0CVxxYG+sYEdX2UKGgGaAloD0MIgnAFFOobRECUhpRSlGgVS+FoFkdAlccgPqcEvHV9lChoBmgJaA9DCBWoxeBhvHFAlIaUUpRoFU0XAWgWR0CVyAX8wYcedX2UKGgGaAloD0MIx7ji4qgaa0CUhpRSlGgVTSoBaBZHQJXIzuCwr2B1fZQoaAZoCWgPQwjhmjv6H5hwQJSGlFKUaBVL72gWR0CVyPWd3B55dX2UKGgGaAloD0MIjBNf7eiycECUhpRSlGgVTSMBaBZHQJXJEmKIi1R1fZQoaAZoCWgPQwi9NbBVQmBzQJSGlFKUaBVNGQFoFkdAlckfgvUSZnV9lChoBmgJaA9DCFGhurn4dW9AlIaUUpRoFU0CAWgWR0CVyXwQUYbbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2-CT.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38e582d87160a7f24b7b6ea4d713f48d9e784e4472757634b4a86304813ab1a6
3
+ size 147387
ppo-LunarLander-v2-CT/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2-CT/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0301f7b700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0301f7b790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0301f7b820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0301f7b8b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0301f7b940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0301f7b9d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0301f7ba60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0301f7baf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0301f7bb80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0301f7bc10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0301f7bca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0301f7bd30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0301f7da00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1682396933760213653,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGPkt76rjyA/JPgjPsscj75kFg++/wQguwAAAAAAAAAA5vCtvqh23D6k7QQ+ATHCvrCYwb0Cohk+AAAAAAAAAAANFom9tE1xPxBqer3jlLO+8aWevQLgF70AAAAAAAAAAA2mgr02wrA+05TNO0AXnL6gZ7A8c6UUvQAAAAAAAAAAfaPGvvt2QT/m5zk+SdKsvguT+71bCXQ9AAAAAAAAAAAA9Nk9fFKnP8Jpsj7NjAq/Q/4JPprXxT0AAAAAAAAAAIAuir3kp0Q/wPRiPHfXq75nFpu6CjsuPQAAAAAAAAAARpIXvggJXz+Of1O+ym6pviWeer323Ty9AAAAAAAAAADAZIO9j/YHuqF/TDO6jBEwoSs+O64FxLMAAIA/AACAPwDkp73lpQ4+Qxzuup65Vb5E1Uq92W8oPQAAAAAAAAAAZjVlPXP+hj/K+h89+T7avv5fkT2ZHT89AAAAAAAAAADA2689Keg6uv7UgrulN7w4p7VYuoijCDoAAIA/AAAAALPp171SbI+7uGNePDyWkjyFt+G8VcZ5PQAAgD8AAAAAzSMlvcP5PrqiyFg3q8toMdFdFTqwoX22AACAPwAAgD+OYY++UKKbP57cD78kPtG+zBWXvknDy70AAAAAAAAAANC/sL6IlRc/PejEPRzQjr7QsK29blHgPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5E7pYD30ckCUhpRSlIwBbJRNTwGMAXSUR0CVe1BshxHYdX2UKGgGaAloD0MI3uNMEzb/bECUhpRSlGgVTU4BaBZHQJV8IsK9f1J1fZQoaAZoCWgPQwiwOJz5FQ1wQJSGlFKUaBVNVQFoFkdAlXzagElme3V9lChoBmgJaA9DCN4BnrRwVXJAlIaUUpRoFU0oAWgWR0CVfiDmr8zidX2UKGgGaAloD0MIHxK+9zdPb0CUhpRSlGgVTTEBaBZHQJV+/2QGOdZ1fZQoaAZoCWgPQwgqkUQvo7JwQJSGlFKUaBVNJgFoFkdAlX+EFfReC3V9lChoBmgJaA9DCAQ8aeEynW5AlIaUUpRoFU07AWgWR0CVf7zjm0VrdX2UKGgGaAloD0MIRzzZzUxScECUhpRSlGgVTd4BaBZHQJWAW4UeuFJ1fZQoaAZoCWgPQwhTXFX2XVhuQJSGlFKUaBVNOQFoFkdAlYCiqU/wAnV9lChoBmgJaA9DCNbJGYq7GHBAlIaUUpRoFU1dAWgWR0CVgYl+EytWdX2UKGgGaAloD0MI+62dKMn3cECUhpRSlGgVTQ4BaBZHQJWCdWyTpxF1fZQoaAZoCWgPQwjIXYQpyuVxQJSGlFKUaBVNOAFoFkdAlYOUiUxEfHV9lChoBmgJaA9DCC8UsB3MTHFAlIaUUpRoFU0rAWgWR0CVg5QdjoZAdX2UKGgGaAloD0MIGhh5WdMxcECUhpRSlGgVTQQBaBZHQJWDm0ojOcF1fZQoaAZoCWgPQwggf2lR30dwQJSGlFKUaBVNDAFoFkdAlYROTq0MPXV9lChoBmgJaA9DCD51rFJ6g21AlIaUUpRoFU0LAWgWR0CVhRHhCMP0dX2UKGgGaAloD0MIwY7/AkEeckCUhpRSlGgVTXYBaBZHQJWFknWrfch1fZQoaAZoCWgPQwgzpmCNs6ltQJSGlFKUaBVNFgFoFkdAlYYDfJmuknV9lChoBmgJaA9DCNF14QfnlnBAlIaUUpRoFU2pA2gWR0CVhosr/bTMdX2UKGgGaAloD0MIEFoPX2ZKc0CUhpRSlGgVTTEBaBZHQJWJgdLg4wR1fZQoaAZoCWgPQwjac5maBBhwQJSGlFKUaBVNGwFoFkdAlYmhxkupTHV9lChoBmgJaA9DCN/6sN4oiG5AlIaUUpRoFU0rAWgWR0CVipBOHnEEdX2UKGgGaAloD0MIhzYAG1BDcECUhpRSlGgVTXUBaBZHQJWKovAXVLB1fZQoaAZoCWgPQwjkMJi/QrJxQJSGlFKUaBVNHAFoFkdAlYr50nw5N3V9lChoBmgJaA9DCKbuyi4YMklAlIaUUpRoFUu6aBZHQJWLYHMUypJ1fZQoaAZoCWgPQwhenznr01NxQJSGlFKUaBVNhwFoFkdAlYwR2GIsRXV9lChoBmgJaA9DCCMT8GskQW5AlIaUUpRoFU0UAWgWR0CVjO+tKZlWdX2UKGgGaAloD0MI/AEPDCDwa0CUhpRSlGgVTT0BaBZHQJWNKinHead1fZQoaAZoCWgPQwg42QbugG9wQJSGlFKUaBVNIgFoFkdAlY1fwRXfZXV9lChoBmgJaA9DCEAv3LnwIXBAlIaUUpRoFU2dAWgWR0CVjXs0pEx7dX2UKGgGaAloD0MI6bevAyfmckCUhpRSlGgVTSwBaBZHQJWNpgVoHs11fZQoaAZoCWgPQwgMdy6MdOFwQJSGlFKUaBVNSgFoFkdAlY8TNt65XnV9lChoBmgJaA9DCGB3uvMEN3BAlIaUUpRoFU0aAWgWR0CVj9b6guh9dX2UKGgGaAloD0MIEHUfgFRQbUCUhpRSlGgVTWcBaBZHQJWRH/6wdKd1fZQoaAZoCWgPQwhI4uXpnOdxQJSGlFKUaBVNcgFoFkdAlZH3qzJIUnV9lChoBmgJaA9DCLX5f9WRh3BAlIaUUpRoFU0HAWgWR0CVkrx/d69kdX2UKGgGaAloD0MI7dgIxOtScECUhpRSlGgVTQsBaBZHQJWTSwu/UON1fZQoaAZoCWgPQwiV1AloojpyQJSGlFKUaBVNGQFoFkdAlZNn/o7muHV9lChoBmgJaA9DCDOK5ZZWkm9AlIaUUpRoFU0RAWgWR0CVk9jc2zfKdX2UKGgGaAloD0MIQ6uTMxTLcECUhpRSlGgVTWIBaBZHQJWU6tuDSPV1fZQoaAZoCWgPQwiEmiFVlHdxQJSGlFKUaBVNIwFoFkdAlZUf9Hc1wnV9lChoBmgJaA9DCPksz4M75mxAlIaUUpRoFU0HAWgWR0CVqhOH31zydX2UKGgGaAloD0MIW7QAbSv0cECUhpRSlGgVTRYBaBZHQJWqcxBVuJl1fZQoaAZoCWgPQwgZWTLHslZwQJSGlFKUaBVNhgFoFkdAlarVmvnr6nV9lChoBmgJaA9DCH5v0589xHJAlIaUUpRoFU0nAWgWR0CVquP3i704dX2UKGgGaAloD0MIMdEgBc8jbkCUhpRSlGgVTR0BaBZHQJWrLgvUSZl1fZQoaAZoCWgPQwgHmWTk7HpwQJSGlFKUaBVNJAFoFkdAlaux59mYjXV9lChoBmgJaA9DCNSbUfPVsnBAlIaUUpRoFU0LAWgWR0CVrXQL/jsEdX2UKGgGaAloD0MIzhySWqjBb0CUhpRSlGgVTSkBaBZHQJWtm+TNdJJ1fZQoaAZoCWgPQwjwTdNnhwJwQJSGlFKUaBVNBgFoFkdAla5qyrxRVXV9lChoBmgJaA9DCFiOkIG8Am9AlIaUUpRoFU0MAWgWR0CVr0vzOHFhdX2UKGgGaAloD0MIkNlZ9M7sbkCUhpRSlGgVTQIBaBZHQJWwO9h7Vrh1fZQoaAZoCWgPQwjp0r8klSBsQJSGlFKUaBVNIwFoFkdAlbDM+V1OkHV9lChoBmgJaA9DCImYEkm0dHBAlIaUUpRoFU0FAWgWR0CVsPdMj/uLdX2UKGgGaAloD0MIC0eQSjGAb0CUhpRSlGgVTQMBaBZHQJWx7FMqSYB1fZQoaAZoCWgPQwj2evfH+25yQJSGlFKUaBVNQAFoFkdAlbJq0tyxRnV9lChoBmgJaA9DCOljPiBQZHBAlIaUUpRoFU0XAWgWR0CVssa11GLDdX2UKGgGaAloD0MImrUUkHYzbkCUhpRSlGgVTQwBaBZHQJWzn0Gu9vl1fZQoaAZoCWgPQwhksOJU6z1yQJSGlFKUaBVNAQFoFkdAlbO8YQ8OkXV9lChoBmgJaA9DCKZ8CKrGm29AlIaUUpRoFU0gAWgWR0CVtALrX18LdX2UKGgGaAloD0MIq5Se6eWockCUhpRSlGgVTSkBaBZHQJW0UoG6f8N1fZQoaAZoCWgPQwis4LchRjRuQJSGlFKUaBVNRwFoFkdAlbSreMyaeHV9lChoBmgJaA9DCIv5uaEpIHNAlIaUUpRoFU1RAWgWR0CVtTCHymQ9dX2UKGgGaAloD0MIkZvhBnwwcUCUhpRSlGgVTQ8BaBZHQJW1t9oexOd1fZQoaAZoCWgPQwitNZTaC1RvQJSGlFKUaBVNHQFoFkdAlbZFK02LpHV9lChoBmgJaA9DCKxT5XvGVG9AlIaUUpRoFU0VAWgWR0CVtukWhysCdX2UKGgGaAloD0MIRgiPNk45ckCUhpRSlGgVTQoBaBZHQJW3fibUgB91fZQoaAZoCWgPQwhkP4uliHxxQJSGlFKUaBVNAAFoFkdAlbieJpFkQXV9lChoBmgJaA9DCH7Er1gDAnBAlIaUUpRoFU0SAWgWR0CVuVz+m3vydX2UKGgGaAloD0MIQx8sY4O6cECUhpRSlGgVS/5oFkdAlbmthJAdGXV9lChoBmgJaA9DCN2adFuisHBAlIaUUpRoFU1BAWgWR0CVuj/sE7nxdX2UKGgGaAloD0MIkUPEzSnxcUCUhpRSlGgVTQUBaBZHQJW6apWFN+N1fZQoaAZoCWgPQwj5wI7/wuNxQJSGlFKUaBVNAQFoFkdAlbucKXv6THV9lChoBmgJaA9DCMnJxK1CJnBAlIaUUpRoFU0ZAWgWR0CVvM7Dl5nldX2UKGgGaAloD0MIUgslk5O9cUCUhpRSlGgVTRcBaBZHQJW9I2OyVwB1fZQoaAZoCWgPQwgLCK2Hr69wQJSGlFKUaBVNDgFoFkdAlb1BXnyNGXV9lChoBmgJaA9DCGBXk6ds1XBAlIaUUpRoFU0LAWgWR0CVvlsT37DVdX2UKGgGaAloD0MIoKcBgyQecUCUhpRSlGgVTRoBaBZHQJW/lTisGPh1fZQoaAZoCWgPQwh/Z3v0RrRyQJSGlFKUaBVNRgFoFkdAlb/SX6ZYxXV9lChoBmgJaA9DCFSLiGLyzXFAlIaUUpRoFU2JAWgWR0CVwGJJXhfjdX2UKGgGaAloD0MIyuL+I1PicUCUhpRSlGgVTQMBaBZHQJXAbAHmig11fZQoaAZoCWgPQwgstklF4ypxQJSGlFKUaBVNrgFoFkdAlcDIPPLPlnV9lChoBmgJaA9DCIl+bf00T3BAlIaUUpRoFUv4aBZHQJXB5AmiQDF1fZQoaAZoCWgPQwgGnRA6qGJyQJSGlFKUaBVNDgFoFkdAlcHkeIVM23V9lChoBmgJaA9DCDNv1XXobXBAlIaUUpRoFU0AAWgWR0CVwmxJNCZ4dX2UKGgGaAloD0MIDf/pBgrha0CUhpRSlGgVTXEBaBZHQJXDG9lEqlR1fZQoaAZoCWgPQwjhtOBFX89AQJSGlFKUaBVL3mgWR0CVwxvrnkksdX2UKGgGaAloD0MIVix+U1jIcECUhpRSlGgVTQYBaBZHQJXDPhn8Koh1fZQoaAZoCWgPQwjU00fgT4JyQJSGlFKUaBVNDQFoFkdAlcVHdweeWnV9lChoBmgJaA9DCG+6ZYe4PnFAlIaUUpRoFU0hAWgWR0CVxk0tRNypdX2UKGgGaAloD0MIaRzqd2E0cECUhpRSlGgVTTABaBZHQJXGsZ4wAVB1fZQoaAZoCWgPQwgX00z3utVvQJSGlFKUaBVNiwFoFkdAlccAGnn+ynV9lChoBmgJaA9DCE1mvK00JnBAlIaUUpRoFU0ZAWgWR0CVxxYG+sYEdX2UKGgGaAloD0MIgnAFFOobRECUhpRSlGgVS+FoFkdAlccgPqcEvHV9lChoBmgJaA9DCBWoxeBhvHFAlIaUUpRoFU0XAWgWR0CVyAX8wYcedX2UKGgGaAloD0MIx7ji4qgaa0CUhpRSlGgVTSoBaBZHQJXIzuCwr2B1fZQoaAZoCWgPQwjhmjv6H5hwQJSGlFKUaBVL72gWR0CVyPWd3B55dX2UKGgGaAloD0MIjBNf7eiycECUhpRSlGgVTSMBaBZHQJXJEmKIi1R1fZQoaAZoCWgPQwi9NbBVQmBzQJSGlFKUaBVNGQFoFkdAlckfgvUSZnV9lChoBmgJaA9DCFGhurn4dW9AlIaUUpRoFU0CAWgWR0CVyXwQUYbbdWUu"
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 248,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
ppo-LunarLander-v2-CT/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfd19d72df33057c528fea5b118a6b40db92a164d40e8d06011d676bda30ad62
3
+ size 87929
ppo-LunarLander-v2-CT/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da9d89097b1e4ea134210182a76215f14e92d554cec9af4e182c7cd4f81053bc
3
+ size 43329
ppo-LunarLander-v2-CT/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-CT/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (211 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.648741982223, "std_reward": 19.41274558666738, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-25T05:27:28.938716"}