carlomax commited on
Commit
99ed655
1 Parent(s): 42cafed

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.931799370965072
28
  - name: Recall
29
  type: recall
30
- value: 0.9473241332884551
31
  - name: F1
32
  type: f1
33
- value: 0.9394976216306434
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9857538117383882
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0629
47
- - Precision: 0.9318
48
- - Recall: 0.9473
49
- - F1: 0.9395
50
- - Accuracy: 0.9858
51
 
52
  ## Model description
53
 
@@ -78,14 +78,14 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0872 | 1.0 | 1756 | 0.0716 | 0.9122 | 0.9285 | 0.9203 | 0.9814 |
82
- | 0.0335 | 2.0 | 3512 | 0.0631 | 0.9257 | 0.9456 | 0.9356 | 0.9854 |
83
- | 0.0164 | 3.0 | 5268 | 0.0629 | 0.9318 | 0.9473 | 0.9395 | 0.9858 |
84
 
85
 
86
  ### Framework versions
87
 
88
- - Transformers 4.27.1
89
  - Pytorch 1.13.1+cu116
90
  - Datasets 2.10.1
91
  - Tokenizers 0.13.2
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9343150231634679
28
  - name: Recall
29
  type: recall
30
+ value: 0.9503534163581285
31
  - name: F1
32
  type: f1
33
+ value: 0.9422659769731353
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9859598516512628
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0611
47
+ - Precision: 0.9343
48
+ - Recall: 0.9504
49
+ - F1: 0.9423
50
+ - Accuracy: 0.9860
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.085 | 1.0 | 1756 | 0.0658 | 0.9169 | 0.9345 | 0.9257 | 0.9827 |
82
+ | 0.0331 | 2.0 | 3512 | 0.0641 | 0.9302 | 0.9493 | 0.9397 | 0.9858 |
83
+ | 0.018 | 3.0 | 5268 | 0.0611 | 0.9343 | 0.9504 | 0.9423 | 0.9860 |
84
 
85
 
86
  ### Framework versions
87
 
88
+ - Transformers 4.27.2
89
  - Pytorch 1.13.1+cu116
90
  - Datasets 2.10.1
91
  - Tokenizers 0.13.2