update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,14 +78,14 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
-
- Transformers 4.27.
|
89 |
- Pytorch 1.13.1+cu116
|
90 |
- Datasets 2.10.1
|
91 |
- Tokenizers 0.13.2
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.9343150231634679
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.9503534163581285
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.9422659769731353
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9859598516512628
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0611
|
47 |
+
- Precision: 0.9343
|
48 |
+
- Recall: 0.9504
|
49 |
+
- F1: 0.9423
|
50 |
+
- Accuracy: 0.9860
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.085 | 1.0 | 1756 | 0.0658 | 0.9169 | 0.9345 | 0.9257 | 0.9827 |
|
82 |
+
| 0.0331 | 2.0 | 3512 | 0.0641 | 0.9302 | 0.9493 | 0.9397 | 0.9858 |
|
83 |
+
| 0.018 | 3.0 | 5268 | 0.0611 | 0.9343 | 0.9504 | 0.9423 | 0.9860 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
+
- Transformers 4.27.2
|
89 |
- Pytorch 1.13.1+cu116
|
90 |
- Datasets 2.10.1
|
91 |
- Tokenizers 0.13.2
|