carlito507 commited on
Commit
a1305b7
1 Parent(s): 19dd0ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -1
README.md CHANGED
@@ -2,4 +2,43 @@
2
  license: afl-3.0
3
  language:
4
  - fr
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: afl-3.0
3
  language:
4
  - fr
5
+ ---
6
+ Finetuned from [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self).
7
+
8
+ # Installation
9
+ 1. PyTorch installation: https://pytorch.org/
10
+ 2. Install transformers: https://huggingface.co/docs/transformers/installation
11
+
12
+ e.g., installation by conda
13
+ ```
14
+ >> conda create -n wav2vec2 python=3.8
15
+ >> conda install pytorch cudatoolkit=11.3 -c pytorch
16
+ >> conda install -c conda-forge transformers
17
+ ```
18
+
19
+ # Usage
20
+ ```python
21
+ # Load the model and processor
22
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
23
+ import numpy as np
24
+ import torch
25
+
26
+ model = Wav2Vec2ForCTC.from_pretrained(r'yongjian/wav2vec2-large-a') # Note: PyTorch Model
27
+ processor = Wav2Vec2Processor.from_pretrained(r'yongjian/wav2vec2-large-a')
28
+
29
+ # Load input
30
+ np_wav = np.random.normal(size=(16000)).clip(-1, 1) # change it to your sample
31
+
32
+ # Inference
33
+ sample_rate = processor.feature_extractor.sampling_rate
34
+ with torch.no_grad():
35
+ model_inputs = processor(np_wav, sampling_rate=sample_rate, return_tensors="pt", padding=True)
36
+ logits = model(model_inputs.input_values, attention_mask=model_inputs.attention_mask).logits # use .cuda() for GPU acceleration
37
+ pred_ids = torch.argmax(logits, dim=-1).cpu()
38
+ pred_text = processor.batch_decode(pred_ids)
39
+ print('Transcription:', pred_text)
40
+ ```
41
+
42
+ # Code
43
+ GitHub Repo:
44
+ https://github.com/CassiniHuy/wav2vec2_finetune