Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- cardiffnlp/super_tweeteval
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
---
|
9 |
+
# cardiffnlp/twitter-roberta-large-latest-tweet-topic
|
10 |
+
|
11 |
+
This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for topic classification (multilabel classification) on the _TweetTopic_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
|
12 |
+
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).
|
13 |
+
|
14 |
+
## Labels
|
15 |
+
<code>
|
16 |
+
"id2label": {
|
17 |
+
"0": "arts_&_culture",
|
18 |
+
"1": "business_&_entrepreneurs",
|
19 |
+
"2": "celebrity_&_pop_culture",
|
20 |
+
"3": "diaries_&_daily_life",
|
21 |
+
"4": "family",
|
22 |
+
"5": "fashion_&_style",
|
23 |
+
"6": "film_tv_&_video",
|
24 |
+
"7": "fitness_&_health",
|
25 |
+
"8": "food_&_dining",
|
26 |
+
"9": "gaming",
|
27 |
+
"10": "learning_&_educational",
|
28 |
+
"11": "music",
|
29 |
+
"12": "news_&_social_concern",
|
30 |
+
"13": "other_hobbies",
|
31 |
+
"14": "relationships",
|
32 |
+
"15": "science_&_technology",
|
33 |
+
"16": "sports",
|
34 |
+
"17": "travel_&_adventure",
|
35 |
+
"18": "youth_&_student_life"
|
36 |
+
}
|
37 |
+
</code>
|
38 |
+
|
39 |
+
|
40 |
+
## Example
|
41 |
+
```python
|
42 |
+
from transformers import pipeline
|
43 |
+
text = "So @AB is just the latest victim of the madden curse. If you’re on the cover of that game your career will take a turn for the worse"
|
44 |
+
|
45 |
+
pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-latest-tweet-topic", return_all_scores=True)
|
46 |
+
predictions = pipe(text)[0]
|
47 |
+
predictions = [x for x in predictions if x['score'] > 0.5]
|
48 |
+
predictions
|
49 |
+
>> [{'label': 'gaming', 'score': 0.899931013584137},
|
50 |
+
{'label': 'sports', 'score': 0.5215537548065186}]
|
51 |
+
```
|
52 |
+
|
53 |
+
## Citation Information
|
54 |
+
|
55 |
+
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
|
56 |
+
|
57 |
+
```bibtex
|
58 |
+
@inproceedings{antypas2023supertweeteval,
|
59 |
+
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
|
60 |
+
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
|
61 |
+
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
|
62 |
+
year={2023}
|
63 |
+
}
|
64 |
+
```
|