antypasd commited on
Commit
0c44cfd
1 Parent(s): a9881a3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - cardiffnlp/super_tweeteval
5
+ language:
6
+ - en
7
+ pipeline_tag: text-classification
8
+ ---
9
+ # cardiffnlp/twitter-roberta-large-latest-tweet-topic
10
+
11
+ This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for topic classification (multilabel classification) on the _TweetTopic_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
12
+ The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).
13
+
14
+ ## Labels
15
+ <code>
16
+ "id2label": {
17
+ "0": "arts_&_culture",
18
+ "1": "business_&_entrepreneurs",
19
+ "2": "celebrity_&_pop_culture",
20
+ "3": "diaries_&_daily_life",
21
+ "4": "family",
22
+ "5": "fashion_&_style",
23
+ "6": "film_tv_&_video",
24
+ "7": "fitness_&_health",
25
+ "8": "food_&_dining",
26
+ "9": "gaming",
27
+ "10": "learning_&_educational",
28
+ "11": "music",
29
+ "12": "news_&_social_concern",
30
+ "13": "other_hobbies",
31
+ "14": "relationships",
32
+ "15": "science_&_technology",
33
+ "16": "sports",
34
+ "17": "travel_&_adventure",
35
+ "18": "youth_&_student_life"
36
+ }
37
+ </code>
38
+
39
+
40
+ ## Example
41
+ ```python
42
+ from transformers import pipeline
43
+ text = "So @AB is just the latest victim of the madden curse. If you’re on the cover of that game your career will take a turn for the worse"
44
+
45
+ pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-latest-tweet-topic", return_all_scores=True)
46
+ predictions = pipe(text)[0]
47
+ predictions = [x for x in predictions if x['score'] > 0.5]
48
+ predictions
49
+ >> [{'label': 'gaming', 'score': 0.899931013584137},
50
+ {'label': 'sports', 'score': 0.5215537548065186}]
51
+ ```
52
+
53
+ ## Citation Information
54
+
55
+ Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
56
+
57
+ ```bibtex
58
+ @inproceedings{antypas2023supertweeteval,
59
+ title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
60
+ author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
61
+ booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
62
+ year={2023}
63
+ }
64
+ ```