antypasd commited on
Commit
e2a5db1
1 Parent(s): d9af032

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -4
README.md CHANGED
@@ -4,12 +4,19 @@ language:
4
  license: mit
5
  datasets:
6
  - cardiffnlp/super_tweeteval
7
- pipeline_tag: sentence-similarity
 
 
 
 
 
 
 
8
  ---
9
  # cardiffnlp/twitter-roberta-large-similarity-latest
10
 
11
  This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for tweet similarity (regression on two texts) on the _TweetSIM_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
12
- The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).
13
 
14
  ## Example
15
  ```python
@@ -25,8 +32,9 @@ text_2 = 'For someone who keeps saying long story short, the story is quite long
25
 
26
  text_input = f"{text_1} </s> {text_2}"
27
 
28
- model(**tokenizer(text_input, return_tensors="pt")).logits
29
- >>tensor([[2.9565]])
 
30
  ```
31
 
32
 
 
4
  license: mit
5
  datasets:
6
  - cardiffnlp/super_tweeteval
7
+ pipeline_tag: text-classification
8
+ inference:
9
+ parameters:
10
+ function_to_apply: none
11
+ widget:
12
+ - text: >-
13
+ Looooooool what is this story #TalksWithAsh </s> For someone who keeps
14
+ saying long story short, the story is quite long iyah #TalksWithAsh
15
  ---
16
  # cardiffnlp/twitter-roberta-large-similarity-latest
17
 
18
  This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for tweet similarity (regression on two texts) on the _TweetSIM_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
19
+ The original Twitter-larged RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).
20
 
21
  ## Example
22
  ```python
 
32
 
33
  text_input = f"{text_1} </s> {text_2}"
34
 
35
+ pipe = pipeline('text-classification', model=model, tokenizer=tokenizer, function_to_apply="none")
36
+ pipe(text_input)
37
+ >> [{'label': 'LABEL_0', 'score': 3.1845250129699707}]
38
  ```
39
 
40