model update
Browse files- README.md +137 -0
- config.json +1 -1
- eval/metric.json +1 -0
- eval/metric.test_2020.json +1 -0
- eval/metric_span.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/prediction.validation_2020.json +0 -0
- tokenizer_config.json +1 -1
- trainer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: cardiffnlp/twitter-roberta-large-2022-154m-tweetner7-2020
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7
|
16 |
+
type: tner/tweetner7
|
17 |
+
args: tner/tweetner7
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6528115974857014
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6396626345577627
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6665124884366328
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6049985470954377
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5897437616700211
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6233545992999288
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7878581945860234
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7719454000665853
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.804440846536371
|
46 |
+
|
47 |
+
pipeline_tag: token-classification
|
48 |
+
widget:
|
49 |
+
- text: "Jacob Collier is a Grammy awarded artist from England."
|
50 |
+
example_title: "NER Example 1"
|
51 |
+
---
|
52 |
+
# cardiffnlp/twitter-roberta-large-2022-154m-tweetner7-2020
|
53 |
+
|
54 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-2022-154m](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m) on the
|
55 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset.
|
56 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
57 |
+
for more detail). It achieves the following results on the test set:
|
58 |
+
- F1 (micro): 0.6528115974857014
|
59 |
+
- Precision (micro): 0.6396626345577627
|
60 |
+
- Recall (micro): 0.6665124884366328
|
61 |
+
- F1 (macro): 0.6049985470954377
|
62 |
+
- Precision (macro): 0.5897437616700211
|
63 |
+
- Recall (macro): 0.6233545992999288
|
64 |
+
|
65 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
66 |
+
- corporation: 0.5229050279329609
|
67 |
+
- event: 0.4694835680751174
|
68 |
+
- group: 0.6115595737810786
|
69 |
+
- location: 0.651814131126671
|
70 |
+
- person: 0.8390510948905111
|
71 |
+
- product: 0.6531234128999492
|
72 |
+
- work_of_art: 0.4870530209617756
|
73 |
+
|
74 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
75 |
+
- F1 (micro):
|
76 |
+
|
77 |
+
- F1 (macro):
|
78 |
+
|
79 |
+
|
80 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m-tweetner7-2020/raw/main/eval/metric.json)
|
81 |
+
and [metric file of entity span](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m-tweetner7-2020/raw/main/eval/metric_span.json).
|
82 |
+
|
83 |
+
### Usage
|
84 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
85 |
+
```shell
|
86 |
+
pip install tner
|
87 |
+
```
|
88 |
+
and activate model as below.
|
89 |
+
```python
|
90 |
+
from tner import TransformersNER
|
91 |
+
model = TransformersNER("cardiffnlp/twitter-roberta-large-2022-154m-tweetner7-2020")
|
92 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
93 |
+
```
|
94 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
95 |
+
|
96 |
+
### Training hyperparameters
|
97 |
+
|
98 |
+
The following hyperparameters were used during training:
|
99 |
+
- dataset: ['tner/tweetner7']
|
100 |
+
- dataset_split: train_2020
|
101 |
+
- dataset_name: None
|
102 |
+
- local_dataset: None
|
103 |
+
- model: cardiffnlp/twitter-roberta-large-2022-154m
|
104 |
+
- crf: True
|
105 |
+
- max_length: 128
|
106 |
+
- epoch: 30
|
107 |
+
- batch_size: 32
|
108 |
+
- lr: 1e-05
|
109 |
+
- random_seed: 42
|
110 |
+
- gradient_accumulation_steps: 1
|
111 |
+
- weight_decay: 1e-07
|
112 |
+
- lr_warmup_step_ratio: 0.3
|
113 |
+
- max_grad_norm: 10
|
114 |
+
|
115 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m-tweetner7-2020/raw/main/trainer_config.json).
|
116 |
+
|
117 |
+
### Reference
|
118 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
119 |
+
|
120 |
+
```
|
121 |
+
|
122 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
123 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
124 |
+
author = "Ushio, Asahi and
|
125 |
+
Camacho-Collados, Jose",
|
126 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
127 |
+
month = apr,
|
128 |
+
year = "2021",
|
129 |
+
address = "Online",
|
130 |
+
publisher = "Association for Computational Linguistics",
|
131 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
132 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
133 |
+
pages = "53--62",
|
134 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
135 |
+
}
|
136 |
+
|
137 |
+
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"RobertaForTokenClassification"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "cardiffnlp/twitter-roberta-large-2022-154m",
|
3 |
"architectures": [
|
4 |
"RobertaForTokenClassification"
|
5 |
],
|
eval/metric.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6528115974857014, "micro/f1_ci": {}, "micro/recall": 0.6665124884366328, "micro/precision": 0.6396626345577627, "macro/f1": 0.6049985470954377, "macro/f1_ci": {}, "macro/recall": 0.6233545992999288, "macro/precision": 0.5897437616700211, "per_entity_metric": {"corporation": {"f1": 0.5229050279329609, "f1_ci": {}, "precision": 0.5258426966292135, "recall": 0.52}, "event": {"f1": 0.4694835680751174, "f1_ci": {}, "precision": 0.48496605237633367, "recall": 0.4549590536851683}, "group": {"f1": 0.6115595737810786, "f1_ci": {}, "precision": 0.5997466751108297, "recall": 0.6238471673254282}, "location": {"f1": 0.651814131126671, "f1_ci": {}, "precision": 0.5988304093567252, "recall": 0.7150837988826816}, "person": {"f1": 0.8390510948905111, "f1_ci": {}, "precision": 0.8305635838150289, "recall": 0.8477138643067846}, "product": {"f1": 0.6531234128999492, "f1_ci": {}, "precision": 0.6449348044132397, "recall": 0.661522633744856}, "work_of_art": {"f1": 0.4870530209617756, "f1_ci": {}, "precision": 0.44332210998877664, "recall": 0.5403556771545828}}}
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6648604714169603, "micro/f1_ci": {}, "micro/recall": 0.6367410482615464, "micro/precision": 0.6955782312925171, "macro/f1": 0.6275593202037583, "macro/f1_ci": {}, "macro/recall": 0.603965493495998, "macro/precision": 0.6552388888609278, "per_entity_metric": {"corporation": {"f1": 0.5795454545454546, "f1_ci": {}, "precision": 0.6335403726708074, "recall": 0.5340314136125655}, "event": {"f1": 0.4657534246575343, "f1_ci": {}, "precision": 0.483739837398374, "recall": 0.4490566037735849}, "group": {"f1": 0.5968028419182949, "f1_ci": {}, "precision": 0.6666666666666666, "recall": 0.5401929260450161}, "location": {"f1": 0.6948640483383686, "f1_ci": {}, "precision": 0.6927710843373494, "recall": 0.696969696969697}, "person": {"f1": 0.8414634146341463, "f1_ci": {}, "precision": 0.875, "recall": 0.8104026845637584}, "product": {"f1": 0.655581947743468, "f1_ci": {}, "precision": 0.6865671641791045, "recall": 0.6272727272727273}, "work_of_art": {"f1": 0.558904109589041, "f1_ci": {}, "precision": 0.5483870967741935, "recall": 0.5698324022346368}}}
|
eval/metric_span.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7878581945860234, "micro/f1_ci": {}, "micro/recall": 0.804440846536371, "micro/precision": 0.7719454000665853, "macro/f1": 0.7878581945860234, "macro/f1_ci": {}, "macro/recall": 0.804440846536371, "macro/precision": 0.7719454000665853}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7723577235772358, "micro/f1_ci": {}, "micro/recall": 0.7394914374675662, "micro/precision": 0.8082813386273398, "macro/f1": 0.7723577235772358, "macro/f1_ci": {}, "macro/recall": 0.7394914374675662, "macro/precision": 0.8082813386273398}
|
eval/prediction.validation_2020.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
-
"name_or_path": "
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
+
"name_or_path": "cardiffnlp/twitter-roberta-large-2022-154m",
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|
trainer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2020", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-large-2022-154m", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 42, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 10}
|