carbonnnnn commited on
Commit
f27ca70
·
1 Parent(s): b0f0f55

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -35
README.md CHANGED
@@ -23,16 +23,7 @@ labelint = ['LABEL_0', 'LABEL_1', 'LABEL_2', 'LABEL_3', 'LABEL_4', 'LABEL_5', 'L
23
 
24
  labeltxt = np.loadtxt("TASK2/label_vals/l1.txt", dtype="str")
25
 
26
- (where labeltxt is : Agent
27
- Device
28
- Event
29
- Place
30
- Species
31
- SportsSeason
32
- TopicalConcept
33
- UnitOfWork
34
- Work
35
- )
36
 
37
 
38
 
@@ -40,30 +31,23 @@ Work
40
  ### How to use
41
 
42
  You can use this model directly with a pipeline:
43
-
44
- from transformers import pipeline
45
- import numpy as np
46
-
47
- text = "This was a masterpiece. Not completely faithful to the books, but enthralling from beginning to end. Might be my favorite of the three."
48
-
49
-
50
- classifier = pipeline("text-classification", model="carbonnnnn/T2L1DISTILBERT")
51
-
52
-
53
- labeltxt = np.loadtxt("TASK2/label_vals/l1.txt", dtype="str")
54
-
55
-
56
- labelint = ['LABEL_0', 'LABEL_1', 'LABEL_2', 'LABEL_3', 'LABEL_4', 'LABEL_5', 'LABEL_6', 'LABEL_7', 'LABEL_8']
57
-
58
-
59
- output = classifier(text)[0]['label']
60
-
61
-
62
- for i in range(len(labelint)):
63
-
64
- if output == labelint[i]:
65
-
66
- print("Output is : " + str(labeltxt[i]))
67
 
68
  ### Limitations and bias
69
 
@@ -76,4 +60,3 @@ predictions. It also inherits some of
76
 
77
 
78
 
79
- ### BibTeX entry and citation info
 
23
 
24
  labeltxt = np.loadtxt("TASK2/label_vals/l1.txt", dtype="str")
25
 
26
+ (where labeltxt is : Agent, Device, Event, Place, Species, SportsSeason, TopicalConcept, UnitOfWork, Work)
 
 
 
 
 
 
 
 
 
27
 
28
 
29
 
 
31
  ### How to use
32
 
33
  You can use this model directly with a pipeline:
34
+ ```python
35
+ from transformers import pipeline
36
+ import numpy as np
37
+
38
+ text = "This was a masterpiece. Not completely faithful to the books, but enthralling from beginning to end. Might be my favorite of the three."
39
+ classifier = pipeline("text-classification", model="carbonnnnn/T2L1DISTILBERT")
40
+ labeltxt = np.loadtxt("TASK2/label_vals/l1.txt", dtype="str")
41
+ labelint = ['LABEL_0', 'LABEL_1', 'LABEL_2', 'LABEL_3', 'LABEL_4', 'LABEL_5', 'LABEL_6', 'LABEL_7', 'LABEL_8']
42
+
43
+ output = classifier(text)[0]['label']
44
+
45
+ for i in range(len(labelint)):
46
+ if output == labelint[i]:
47
+ print("Output is : " + str(labeltxt[i]))
48
+
49
+ ```
50
+
 
 
 
 
 
 
 
51
 
52
  ### Limitations and bias
53
 
 
60
 
61
 
62