ppo-LunarLander-v2 / config.json
camiloss's picture
PPO LunarLander-v2 trained agent
30ea915
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6d7d2d5000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6d7d2d5090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6d7d2d5120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6d7d2d51b0>", "_build": "<function ActorCriticPolicy._build at 0x7a6d7d2d5240>", "forward": "<function ActorCriticPolicy.forward at 0x7a6d7d2d52d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6d7d2d5360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6d7d2d53f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a6d7d2d5480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6d7d2d5510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6d7d2d55a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6d7d2d5630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6d7d2cd680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697018268869959924, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2KArxxP0y7RzKkvItM+jwFH3M8KqHSvQAAgD8AAIA/irKDvomaiD/mEOC9olWdvjrJ7r7jvuU9AAAAAAAAAACaXOI9M+CHPyPr4j1mH9C+d0fJPUhTbz0AAAAAAAAAAM1pDb4vStQ+vpGiPl4Xlr4Vcjg9W1AuPgAAAAAAAAAAveK5PhmKXz+ps5O9ALrmvvOQiz7GcRK+AAAAAAAAAADNIoM8yBG2vA2DeL1/Oyi9qBK8vTaMhr4AAIA/AACAP2ZQXT0Fs8C7igyGvJTGIj3BVQI95QpIuQAAgD8AAIA/5mY3vUKh9T5T6EI9ZUWqvsoklDyFTIM8AAAAAAAAAACapUw8e4qLuuaJITdgWBUyvY2EOvpDO7YAAIA/AACAP7NqBT4MLg4+QNmDviTqjb5CmTQ9Y+VqPAAAAAAAAAAAmnkpOpXBoz87uKA8r9XBvpeGfLy9kui8AAAAAAAAAADmTiw94VyOurY3RLypvoo8SWN2OtLfcb0AAIA/AACAP8B9mT3zS6A/JY1uPn9/277K4QA9ki6HPQAAAAAAAAAAzdGvvDiI1LvCzBa9g9G3O0XkND0OXKi8AACAPwAAgD9mLu49MiAEPnVvWL7tZbG+nVubu0ZyXbsAAAAAAAAAAMAfjD3DYSW6MDc/ONVRIjK8mti6SxxftwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEUtp22XsyMAWyUTQ4BjAF0lEdAsZdrJbMX8HV9lChoBkdAcXQ7Xg9/0GgHTQQBaAhHQLGXcGsFMZh1fZQoaAZHQHDDbWAf+0hoB00GAWgIR0Cxl7NqgyuZdX2UKGgGR0BxNjjJdSl4aAdL4WgIR0Cxl7fWMCLddX2UKGgGR0BxdP4h2W6caAdNCwFoCEdAsZfPG4qgAnV9lChoBkdAc1+HaN+9amgHS/BoCEdAsZf+u5jH43V9lChoBkdAcFne1KGtZGgHS/1oCEdAsZgHdFfAsXV9lChoBkdAcBYAPuogm2gHS/1oCEdAsZgovL5h0HV9lChoBkdAcdqWmgrYoWgHTUcCaAhHQLGYP7YChex1fZQoaAZHQHEz9m16Vt5oB0vmaAhHQLGYVD+zdDZ1fZQoaAZHQHGSIR/ViF1oB00kAWgIR0CxmH+IhyKfdX2UKGgGR0Bx3Xt9hJAdaAdL82gIR0CxmJ+kcjqwdX2UKGgGR0By4/XumaYvaAdNFgFoCEdAsZix8NQTEnV9lChoBkdAcuItCzC1qmgHS/RoCEdAsZjgm/nGKnV9lChoBkdAcPXiaAnUlWgHTQYBaAhHQLGY612JSBN1fZQoaAZHQG9S+qJdjXpoB0vxaAhHQLGY8JYDDCR1fZQoaAZHQHIbA9aEBbRoB0v3aAhHQLGY/t7a7Ep1fZQoaAZHQG9d8H4XXRRoB00zAWgIR0CxmRLNbC79dX2UKGgGR0BwjmcYqG1yaAdL+2gIR0CxmUUVN5+pdX2UKGgGR0BwZEQEpy6uaAdNEgFoCEdAsZlvK2a2F3V9lChoBkdAbyVOryUcGWgHTQcBaAhHQLGZdxcVxjt1fZQoaAZHQHMcBKtga3toB0vwaAhHQLGZiztkWh11fZQoaAZHQHMiGCZnctZoB0vbaAhHQLGZogieNDN1fZQoaAZHQHBJI8dPtUpoB0vqaAhHQLGZossQNCt1fZQoaAZHQHClQqZtvXNoB00LAWgIR0Cxma4RAbADdX2UKGgGR0BxofxVhkRSaAdL+WgIR0CxmeFId2gWdX2UKGgGR0BRr8hs67ulaAdLpmgIR0CxmeYuscQzdX2UKGgGR0BwZU9dNWU9aAdL+GgIR0Cxmgc4YJmedX2UKGgGR0BxkCZJCjUNaAdL/GgIR0CxmizK5kLAdX2UKGgGR0Bz1FtVJcxCaAdL32gIR0CxmkgjIJZ4dX2UKGgGR0ByHhoSL61taAdL7GgIR0Cxmm5/PPcBdX2UKGgGR0BvsSg00m+kaAdL9mgIR0CxmnBz3h4udX2UKGgGR0By8wehf0EpaAdL4mgIR0CxmqjVUdaMdX2UKGgGR0By5B3yI55raAdNAQFoCEdAsZqnAzpHJHV9lChoBkdAc0BW1+iJwmgHS9toCEdAsZrMe9zwMHV9lChoBkdAcMpmICU5dWgHS/NoCEdAsZsJNoJzDHV9lChoBkdAcNCNrCWNWGgHTQYBaAhHQLGbDvexfOV1fZQoaAZHQHKsIMOPNmloB0vraAhHQLGbFENOM2p1fZQoaAZHQHJZyF9KEnNoB00DAWgIR0Cxm0Yw/PgOdX2UKGgGR0B0HcPSUkfLaAdNCwFoCEdAsZtHSKFZgXV9lChoBkdAcFfOLBKtgmgHS+loCEdAsZtagDifhHV9lChoBkdAcXTRmbsniWgHS/5oCEdAsZt2Ay2x6nV9lChoBkdAcFBmwJPZZmgHS+loCEdAsZumV8kUsXV9lChoBkdAcLZ5YHPeHmgHTQ4BaAhHQLGbu8KG+K11fZQoaAZHQHCjmYnfEXNoB0v4aAhHQLGb2CiAUcp1fZQoaAZHQHMzSs8xKxtoB0vpaAhHQLGb6ThYNiJ1fZQoaAZHQHFnOby6MBJoB0v3aAhHQLGb/i4J/od1fZQoaAZHQHBi6p5u63BoB00EAWgIR0CxnFC8rZrYdX2UKGgGR0BveMtI065oaAdNBwFoCEdAsZxUSxqwhXV9lChoBkdAcf/RHf/FSGgHS/FoCEdAsZxWuPmxMXV9lChoBkdAcXGEx7AtWmgHS/FoCEdAsZyWqgh8pnV9lChoBkdAccWjGDL8rWgHS+1oCEdAsZyVvjwQUnV9lChoBkdAcJrEroW56WgHS/5oCEdAsZy5mpVCHHV9lChoBkdAcestWMju8mgHS+xoCEdAsZzQaIeo1nV9lChoBkdAcIJ7CzkZJmgHS/hoCEdAsZ0Fc9nscHV9lChoBkdAcVC2V3Ux22gHS/ZoCEdAsZ0vjS5RTHV9lChoBkdAcKqNNJvo/2gHTRQBaAhHQLGdL0mdAgR1fZQoaAZHQHBxt/4IrvtoB0v6aAhHQLGdgFXJYDF1fZQoaAZHQG/3HZbpu/FoB0vpaAhHQLGdqfZElVt1fZQoaAZHQHDp7M9r435oB0vuaAhHQLGd9jMFEAp1fZQoaAZHQHDO4W56MR9oB0v/aAhHQLGeApgkTpR1fZQoaAZHQHMfPQjUuthoB0v1aAhHQLGei2VVxS51fZQoaAZHQHF3rh3qzJJoB0v7aAhHQLGeqfvWpZR1fZQoaAZHQHH75jlPrOZoB00LAWgIR0Cxntqkyk9EdX2UKGgGR0Bxck2OyVv/aAdL9mgIR0CxnwiRr8BNdX2UKGgGR0BxqCGrS3LFaAdNBQFoCEdAsZ81F9a2W3V9lChoBkdAco01lXiiqWgHS/JoCEdAsZ836KtPpXV9lChoBkdAbathKDkELmgHS/FoCEdAsZ9Z68g6l3V9lChoBkdAc5eJZntfHGgHTaoBaAhHQLGfmHbRF7V1fZQoaAZHQHFMRfrrxAloB0v1aAhHQLGf17SApa11fZQoaAZHQHCofitJWeZoB00TAWgIR0Cxn/7k4m1IdX2UKGgGR0Bw5ZxuKoAGaAdNBwFoCEdAsaAK4NI9T3V9lChoBkdAcchjBVMmGGgHS/NoCEdAsaBVCv5gxHV9lChoBkdAchPtShrWRWgHTQwBaAhHQLGgcExZdOZ1fZQoaAZHQGB2lVktmL9oB03oA2gIR0CxoIUkv9LpdX2UKGgGR0Bw5CcOLBKuaAdL6mgIR0CxoIlIiC8OdX2UKGgGR0BvMIHmig01aAdL7GgIR0CxoJdQKrq/dX2UKGgGR0BzTlUp/gBLaAdL2mgIR0CxoPg7HQyAdX2UKGgGR0Bwm6B9Tgl4aAdL/GgIR0CxoTD4UN8WdX2UKGgGR0BybpllK9PDaAdL3mgIR0CxoUfqgRK6dX2UKGgGR0Bz0v7gsK9gaAdNAwFoCEdAsaF4TVUdaXV9lChoBkdAc0AAhStNjGgHS+toCEdAsaGH6ZYxL3V9lChoBkdAcurxusLfDWgHS+xoCEdAsaGLmozeoHV9lChoBkdAc0UyTpxFRmgHS+RoCEdAsaGVTCLuQnV9lChoBkdAQzWmelKsdWgHS8poCEdAsaHoXDWK/HV9lChoBkdAchJGMn7YTWgHTQABaAhHQLGiLtgrpaB1fZQoaAZHQHBmZ1ie/YdoB00eAWgIR0CxojpowmE5dX2UKGgGR0Bx1oyP+4smaAdNDQFoCEdAsaJZZuAI6nV9lChoBkdAcWpV8CxNZmgHS+ZoCEdAsaJdDc/MXHV9lChoBkdAck6peu3c6GgHTQEBaAhHQLGidq/M4cZ1fZQoaAZHQHNku1KGtZFoB0v1aAhHQLGiguEVWS51fZQoaAZHQHMbW6K+BYpoB00UAWgIR0Cxor49X9zfdX2UKGgGR0BubhOzposaaAdL8mgIR0CxotCBPKuCdX2UKGgGR0BxZCfI0ZWJaAdL7WgIR0CxovZHNHH4dX2UKGgGR0BtdcYXO4XoaAdL7GgIR0CxowUka/ATdX2UKGgGR0Bwo2Aqd6LPaAdL6GgIR0CxozFbeMyadX2UKGgGR0ByUescQyylaAdNBAFoCEdAsaNg/X5FgHV9lChoBkdAcWOliSaEz2gHTQMBaAhHQLGjaXfIjnp1fZQoaAZHQHBxJqASWZ9oB00nAWgIR0Cxo49joZAIdX2UKGgGR0BwMa0pmVZ+aAdNBQFoCEdAsaOrI8yN43VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}