camillebrl
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
---
|
7 |
+
# ModernBERT Environment Claims Classifier
|
8 |
+
|
9 |
+
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) trained on the [QuotaClimat FrugalAIChallenge dataset](https://huggingface.co/datasets/QuotaClimat/frugalaichallenge-text-train).
|
10 |
+
|
11 |
+
## Training Details
|
12 |
+
|
13 |
+
The model was trained using the following configuration:
|
14 |
+
|
15 |
+
```python
|
16 |
+
training_args = TrainingArguments(
|
17 |
+
output_dir="ModernBERT-envclaims-v0",
|
18 |
+
per_device_train_batch_size=32,
|
19 |
+
per_device_eval_batch_size=16,
|
20 |
+
learning_rate=2e-5,
|
21 |
+
num_train_epochs=3,
|
22 |
+
bf16=True,
|
23 |
+
optim="adamw_torch_fused",
|
24 |
+
|
25 |
+
# Logging & Evaluation
|
26 |
+
logging_strategy="steps",
|
27 |
+
logging_steps=100,
|
28 |
+
eval_strategy="epoch",
|
29 |
+
save_strategy="epoch",
|
30 |
+
save_total_limit=2,
|
31 |
+
load_best_model_at_end=True,
|
32 |
+
metric_for_best_model="f1",
|
33 |
+
|
34 |
+
# Training optimization
|
35 |
+
weight_decay=0.01,
|
36 |
+
lr_scheduler_type="cosine",
|
37 |
+
warmup_ratio=0.1,
|
38 |
+
|
39 |
+
# Hub parameters
|
40 |
+
push_to_hub=True,
|
41 |
+
hub_strategy="every_save"
|
42 |
+
)
|
43 |
+
```
|
44 |
+
|
45 |
+
## Model Performance
|
46 |
+
|
47 |
+
The model achieved an F1 score of 0.76 on the evaluation set.
|
48 |
+
|
49 |
+
## Usage
|
50 |
+
You can use this model directly with the Hugging Face Transformers library:
|
51 |
+
```python
|
52 |
+
from transformers import pipeline
|
53 |
+
classifier = pipeline(
|
54 |
+
"text-classification",
|
55 |
+
modelcamillebrl/ModernBERT-envclaims-v1"
|
56 |
+
)
|
57 |
+
text = "Your claim here"
|
58 |
+
class_predicted = classifier(text)
|
59 |
+
```
|
60 |
+
|
61 |
+
The model classifies texts into the following categories:
|
62 |
+
* Label 0: not_relevant
|
63 |
+
* Label 1: not_happening
|
64 |
+
* Label 2: not_human
|
65 |
+
* Label 3: not_bad
|
66 |
+
* Label 4: solutions_harmful_unnecessary
|
67 |
+
* Label 5: science_unreliable
|
68 |
+
* Label 6: proponents_biased
|
69 |
+
* Label 7: fossil_fuels_needed
|