camila-ud commited on
Commit
2d47325
1 Parent(s): fdd476a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -9,6 +9,7 @@ pipeline_tag: token-classification
9
  tags:
10
  - medical
11
  - biomedical
 
12
  ---
13
 
14
 
@@ -53,13 +54,13 @@ Please check the [documentation](https://medkit.readthedocs.io/en/latest/user_gu
53
  from medkit.core.text import TextDocument
54
  from medkit.text.ner.hf_entity_matcher import HFEntityMatcher
55
 
56
- matcher = HFEntityMatcher(model="dcariasvi/DrBERT-CASM2")
57
  test_doc = TextDocument("Elle souffre d'asthme mais n'a pas besoin d'Allegra")
58
 
59
  # detect entities in the raw segment
60
  detected_entities = matcher.run([test_doc.raw_segment])
61
  msg = "|".join(f"'{entity.label}':{entity.text}" for entity in detected_entities)
62
- print(f"Text: '{test_doc.text}'\n{msg}")w
63
  ```
64
  ```
65
  Text: "Elle souffre d'asthme mais n'a pas besoin d'Allegra"
@@ -108,7 +109,7 @@ Overall|0.7188|0.7660|0.7416
108
  from medkit.text.metrics.ner import SeqEvalEvaluator
109
 
110
  # load the matcher and get predicted entities by document
111
- matcher = HFEntityMatcher(model="dcariasvi/DrBERT-CASM2")
112
  predicted_entities = [matchers.run([doc.raw_segment]) for doc in test_documents]
113
 
114
  # define seqeval evaluator
@@ -128,4 +129,4 @@ evaluator.compute(test_documents,predicted_entities=predicted_entities)
128
  ```
129
  ```
130
  HeKA Research Team, “medkit, a Python library for a learning health system.” https://pypi.org/project/medkit-lib/ (accessed Jul. 24, 2023).
131
- ```
 
9
  tags:
10
  - medical
11
  - biomedical
12
+ - medkit-lib
13
  ---
14
 
15
 
 
54
  from medkit.core.text import TextDocument
55
  from medkit.text.ner.hf_entity_matcher import HFEntityMatcher
56
 
57
+ matcher = HFEntityMatcher(model="camila-ud/DrBERT-CASM2")
58
  test_doc = TextDocument("Elle souffre d'asthme mais n'a pas besoin d'Allegra")
59
 
60
  # detect entities in the raw segment
61
  detected_entities = matcher.run([test_doc.raw_segment])
62
  msg = "|".join(f"'{entity.label}':{entity.text}" for entity in detected_entities)
63
+ print(f"Text: '{test_doc.text}'\n{msg}")
64
  ```
65
  ```
66
  Text: "Elle souffre d'asthme mais n'a pas besoin d'Allegra"
 
109
  from medkit.text.metrics.ner import SeqEvalEvaluator
110
 
111
  # load the matcher and get predicted entities by document
112
+ matcher = HFEntityMatcher(model="camila-ud/DrBERT-CASM2")
113
  predicted_entities = [matchers.run([doc.raw_segment]) for doc in test_documents]
114
 
115
  # define seqeval evaluator
 
129
  ```
130
  ```
131
  HeKA Research Team, “medkit, a Python library for a learning health system.” https://pypi.org/project/medkit-lib/ (accessed Jul. 24, 2023).
132
+ ```