|
#include <thrust/device_vector.h> |
|
#include <thrust/host_vector.h> |
|
#include <thrust/transform_reduce.h> |
|
#include <thrust/functional.h> |
|
#include <thrust/extrema.h> |
|
#include <cmath> |
|
#include <limits> |
|
#include <iostream> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T> |
|
struct summary_stats_data |
|
{ |
|
T n; |
|
T min; |
|
T max; |
|
T mean; |
|
T M2; |
|
T M3; |
|
T M4; |
|
|
|
|
|
void initialize() |
|
{ |
|
n = mean = M2 = M3 = M4 = 0; |
|
min = std::numeric_limits<T>::max(); |
|
max = std::numeric_limits<T>::min(); |
|
} |
|
|
|
T variance() { return M2 / (n - 1); } |
|
T variance_n() { return M2 / n; } |
|
T skewness() { return std::sqrt(n) * M3 / std::pow(M2, (T) 1.5); } |
|
T kurtosis() { return n * M4 / (M2 * M2); } |
|
}; |
|
|
|
|
|
|
|
template <typename T> |
|
struct summary_stats_unary_op |
|
{ |
|
__host__ __device__ |
|
summary_stats_data<T> operator()(const T& x) const |
|
{ |
|
summary_stats_data<T> result; |
|
result.n = 1; |
|
result.min = x; |
|
result.max = x; |
|
result.mean = x; |
|
result.M2 = 0; |
|
result.M3 = 0; |
|
result.M4 = 0; |
|
|
|
return result; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
template <typename T> |
|
struct summary_stats_binary_op |
|
: public thrust::binary_function<const summary_stats_data<T>&, |
|
const summary_stats_data<T>&, |
|
summary_stats_data<T> > |
|
{ |
|
__host__ __device__ |
|
summary_stats_data<T> operator()(const summary_stats_data<T>& x, const summary_stats_data <T>& y) const |
|
{ |
|
summary_stats_data<T> result; |
|
|
|
|
|
T n = x.n + y.n; |
|
T n2 = n * n; |
|
T n3 = n2 * n; |
|
|
|
T delta = y.mean - x.mean; |
|
T delta2 = delta * delta; |
|
T delta3 = delta2 * delta; |
|
T delta4 = delta3 * delta; |
|
|
|
|
|
result.n = n; |
|
result.min = thrust::min(x.min, y.min); |
|
result.max = thrust::max(x.max, y.max); |
|
|
|
result.mean = x.mean + delta * y.n / n; |
|
|
|
result.M2 = x.M2 + y.M2; |
|
result.M2 += delta2 * x.n * y.n / n; |
|
|
|
result.M3 = x.M3 + y.M3; |
|
result.M3 += delta3 * x.n * y.n * (x.n - y.n) / n2; |
|
result.M3 += (T) 3.0 * delta * (x.n * y.M2 - y.n * x.M2) / n; |
|
|
|
result.M4 = x.M4 + y.M4; |
|
result.M4 += delta4 * x.n * y.n * (x.n * x.n - x.n * y.n + y.n * y.n) / n3; |
|
result.M4 += (T) 6.0 * delta2 * (x.n * x.n * y.M2 + y.n * y.n * x.M2) / n2; |
|
result.M4 += (T) 4.0 * delta * (x.n * y.M3 - y.n * x.M3) / n; |
|
|
|
return result; |
|
} |
|
}; |
|
|
|
template <typename Iterator> |
|
void print_range(const std::string& name, Iterator first, Iterator last) |
|
{ |
|
typedef typename std::iterator_traits<Iterator>::value_type T; |
|
|
|
std::cout << name << ": "; |
|
thrust::copy(first, last, std::ostream_iterator<T>(std::cout, " ")); |
|
std::cout << "\n"; |
|
} |
|
|
|
|
|
int main(void) |
|
{ |
|
typedef float T; |
|
|
|
|
|
T h_x[] = {4, 7, 13, 16}; |
|
|
|
|
|
thrust::device_vector<T> d_x(h_x, h_x + sizeof(h_x) / sizeof(T)); |
|
|
|
|
|
summary_stats_unary_op<T> unary_op; |
|
summary_stats_binary_op<T> binary_op; |
|
summary_stats_data<T> init; |
|
|
|
init.initialize(); |
|
|
|
|
|
summary_stats_data<T> result = thrust::transform_reduce(d_x.begin(), d_x.end(), unary_op, init, binary_op); |
|
|
|
std::cout <<"******Summary Statistics Example*****"<<std::endl; |
|
print_range("The data", d_x.begin(), d_x.end()); |
|
|
|
std::cout <<"Count : "<< result.n << std::endl; |
|
std::cout <<"Minimum : "<< result.min <<std::endl; |
|
std::cout <<"Maximum : "<< result.max <<std::endl; |
|
std::cout <<"Mean : "<< result.mean << std::endl; |
|
std::cout <<"Variance : "<< result.variance() << std::endl; |
|
std::cout <<"Standard Deviation : "<< std::sqrt(result.variance_n()) << std::endl; |
|
std::cout <<"Skewness : "<< result.skewness() << std::endl; |
|
std::cout <<"Kurtosis : "<< result.kurtosis() << std::endl; |
|
|
|
return 0; |
|
} |
|
|
|
|