|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair, _single |
|
|
|
from annotator.uniformer.mmcv.utils import deprecated_api_warning |
|
from ..cnn import CONV_LAYERS |
|
from ..utils import ext_loader, print_log |
|
|
|
ext_module = ext_loader.load_ext( |
|
'_ext', |
|
['modulated_deform_conv_forward', 'modulated_deform_conv_backward']) |
|
|
|
|
|
class ModulatedDeformConv2dFunction(Function): |
|
|
|
@staticmethod |
|
def symbolic(g, input, offset, mask, weight, bias, stride, padding, |
|
dilation, groups, deform_groups): |
|
input_tensors = [input, offset, mask, weight] |
|
if bias is not None: |
|
input_tensors.append(bias) |
|
return g.op( |
|
'mmcv::MMCVModulatedDeformConv2d', |
|
*input_tensors, |
|
stride_i=stride, |
|
padding_i=padding, |
|
dilation_i=dilation, |
|
groups_i=groups, |
|
deform_groups_i=deform_groups) |
|
|
|
@staticmethod |
|
def forward(ctx, |
|
input, |
|
offset, |
|
mask, |
|
weight, |
|
bias=None, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deform_groups=1): |
|
if input is not None and input.dim() != 4: |
|
raise ValueError( |
|
f'Expected 4D tensor as input, got {input.dim()}D tensor \ |
|
instead.') |
|
ctx.stride = _pair(stride) |
|
ctx.padding = _pair(padding) |
|
ctx.dilation = _pair(dilation) |
|
ctx.groups = groups |
|
ctx.deform_groups = deform_groups |
|
ctx.with_bias = bias is not None |
|
if not ctx.with_bias: |
|
bias = input.new_empty(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input = input.type_as(offset) |
|
weight = weight.type_as(input) |
|
ctx.save_for_backward(input, offset, mask, weight, bias) |
|
output = input.new_empty( |
|
ModulatedDeformConv2dFunction._output_size(ctx, input, weight)) |
|
ctx._bufs = [input.new_empty(0), input.new_empty(0)] |
|
ext_module.modulated_deform_conv_forward( |
|
input, |
|
weight, |
|
bias, |
|
ctx._bufs[0], |
|
offset, |
|
mask, |
|
output, |
|
ctx._bufs[1], |
|
kernel_h=weight.size(2), |
|
kernel_w=weight.size(3), |
|
stride_h=ctx.stride[0], |
|
stride_w=ctx.stride[1], |
|
pad_h=ctx.padding[0], |
|
pad_w=ctx.padding[1], |
|
dilation_h=ctx.dilation[0], |
|
dilation_w=ctx.dilation[1], |
|
group=ctx.groups, |
|
deformable_group=ctx.deform_groups, |
|
with_bias=ctx.with_bias) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
input, offset, mask, weight, bias = ctx.saved_tensors |
|
grad_input = torch.zeros_like(input) |
|
grad_offset = torch.zeros_like(offset) |
|
grad_mask = torch.zeros_like(mask) |
|
grad_weight = torch.zeros_like(weight) |
|
grad_bias = torch.zeros_like(bias) |
|
grad_output = grad_output.contiguous() |
|
ext_module.modulated_deform_conv_backward( |
|
input, |
|
weight, |
|
bias, |
|
ctx._bufs[0], |
|
offset, |
|
mask, |
|
ctx._bufs[1], |
|
grad_input, |
|
grad_weight, |
|
grad_bias, |
|
grad_offset, |
|
grad_mask, |
|
grad_output, |
|
kernel_h=weight.size(2), |
|
kernel_w=weight.size(3), |
|
stride_h=ctx.stride[0], |
|
stride_w=ctx.stride[1], |
|
pad_h=ctx.padding[0], |
|
pad_w=ctx.padding[1], |
|
dilation_h=ctx.dilation[0], |
|
dilation_w=ctx.dilation[1], |
|
group=ctx.groups, |
|
deformable_group=ctx.deform_groups, |
|
with_bias=ctx.with_bias) |
|
if not ctx.with_bias: |
|
grad_bias = None |
|
|
|
return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, |
|
None, None, None, None, None) |
|
|
|
@staticmethod |
|
def _output_size(ctx, input, weight): |
|
channels = weight.size(0) |
|
output_size = (input.size(0), channels) |
|
for d in range(input.dim() - 2): |
|
in_size = input.size(d + 2) |
|
pad = ctx.padding[d] |
|
kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1 |
|
stride_ = ctx.stride[d] |
|
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) |
|
if not all(map(lambda s: s > 0, output_size)): |
|
raise ValueError( |
|
'convolution input is too small (output would be ' + |
|
'x'.join(map(str, output_size)) + ')') |
|
return output_size |
|
|
|
|
|
modulated_deform_conv2d = ModulatedDeformConv2dFunction.apply |
|
|
|
|
|
class ModulatedDeformConv2d(nn.Module): |
|
|
|
@deprecated_api_warning({'deformable_groups': 'deform_groups'}, |
|
cls_name='ModulatedDeformConv2d') |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deform_groups=1, |
|
bias=True): |
|
super(ModulatedDeformConv2d, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = _pair(kernel_size) |
|
self.stride = _pair(stride) |
|
self.padding = _pair(padding) |
|
self.dilation = _pair(dilation) |
|
self.groups = groups |
|
self.deform_groups = deform_groups |
|
|
|
self.transposed = False |
|
self.output_padding = _single(0) |
|
|
|
self.weight = nn.Parameter( |
|
torch.Tensor(out_channels, in_channels // groups, |
|
*self.kernel_size)) |
|
if bias: |
|
self.bias = nn.Parameter(torch.Tensor(out_channels)) |
|
else: |
|
self.register_parameter('bias', None) |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
n = self.in_channels |
|
for k in self.kernel_size: |
|
n *= k |
|
stdv = 1. / math.sqrt(n) |
|
self.weight.data.uniform_(-stdv, stdv) |
|
if self.bias is not None: |
|
self.bias.data.zero_() |
|
|
|
def forward(self, x, offset, mask): |
|
return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias, |
|
self.stride, self.padding, |
|
self.dilation, self.groups, |
|
self.deform_groups) |
|
|
|
|
|
@CONV_LAYERS.register_module('DCNv2') |
|
class ModulatedDeformConv2dPack(ModulatedDeformConv2d): |
|
"""A ModulatedDeformable Conv Encapsulation that acts as normal Conv |
|
layers. |
|
|
|
Args: |
|
in_channels (int): Same as nn.Conv2d. |
|
out_channels (int): Same as nn.Conv2d. |
|
kernel_size (int or tuple[int]): Same as nn.Conv2d. |
|
stride (int): Same as nn.Conv2d, while tuple is not supported. |
|
padding (int): Same as nn.Conv2d, while tuple is not supported. |
|
dilation (int): Same as nn.Conv2d, while tuple is not supported. |
|
groups (int): Same as nn.Conv2d. |
|
bias (bool or str): If specified as `auto`, it will be decided by the |
|
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise |
|
False. |
|
""" |
|
|
|
_version = 2 |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(ModulatedDeformConv2dPack, self).__init__(*args, **kwargs) |
|
self.conv_offset = nn.Conv2d( |
|
self.in_channels, |
|
self.deform_groups * 3 * self.kernel_size[0] * self.kernel_size[1], |
|
kernel_size=self.kernel_size, |
|
stride=self.stride, |
|
padding=self.padding, |
|
dilation=self.dilation, |
|
bias=True) |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
super(ModulatedDeformConv2dPack, self).init_weights() |
|
if hasattr(self, 'conv_offset'): |
|
self.conv_offset.weight.data.zero_() |
|
self.conv_offset.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
out = self.conv_offset(x) |
|
o1, o2, mask = torch.chunk(out, 3, dim=1) |
|
offset = torch.cat((o1, o2), dim=1) |
|
mask = torch.sigmoid(mask) |
|
return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias, |
|
self.stride, self.padding, |
|
self.dilation, self.groups, |
|
self.deform_groups) |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, |
|
missing_keys, unexpected_keys, error_msgs): |
|
version = local_metadata.get('version', None) |
|
|
|
if version is None or version < 2: |
|
|
|
|
|
|
|
if (prefix + 'conv_offset.weight' not in state_dict |
|
and prefix[:-1] + '_offset.weight' in state_dict): |
|
state_dict[prefix + 'conv_offset.weight'] = state_dict.pop( |
|
prefix[:-1] + '_offset.weight') |
|
if (prefix + 'conv_offset.bias' not in state_dict |
|
and prefix[:-1] + '_offset.bias' in state_dict): |
|
state_dict[prefix + |
|
'conv_offset.bias'] = state_dict.pop(prefix[:-1] + |
|
'_offset.bias') |
|
|
|
if version is not None and version > 1: |
|
print_log( |
|
f'ModulatedDeformConvPack {prefix.rstrip(".")} is upgraded to ' |
|
'version 2.', |
|
logger='root') |
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, |
|
strict, missing_keys, unexpected_keys, |
|
error_msgs) |
|
|