|
_base_ = [ |
|
'../../configs/_base_/models/upernet_uniformer.py', |
|
'../../configs/_base_/datasets/ade20k.py', |
|
'../../configs/_base_/default_runtime.py', |
|
'../../configs/_base_/schedules/schedule_160k.py' |
|
] |
|
model = dict( |
|
backbone=dict( |
|
type='UniFormer', |
|
embed_dim=[64, 128, 320, 512], |
|
layers=[3, 4, 8, 3], |
|
head_dim=64, |
|
drop_path_rate=0.25, |
|
windows=False, |
|
hybrid=False |
|
), |
|
decode_head=dict( |
|
in_channels=[64, 128, 320, 512], |
|
num_classes=150 |
|
), |
|
auxiliary_head=dict( |
|
in_channels=320, |
|
num_classes=150 |
|
)) |
|
|
|
|
|
optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, |
|
paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), |
|
'relative_position_bias_table': dict(decay_mult=0.), |
|
'norm': dict(decay_mult=0.)})) |
|
|
|
lr_config = dict(_delete_=True, policy='poly', |
|
warmup='linear', |
|
warmup_iters=1500, |
|
warmup_ratio=1e-6, |
|
power=1.0, min_lr=0.0, by_epoch=False) |
|
|
|
data=dict(samples_per_gpu=2) |