|
|
|
import torch |
|
from torch.nn.parallel.distributed import (DistributedDataParallel, |
|
_find_tensors) |
|
|
|
from annotator.uniformer.mmcv import print_log |
|
from annotator.uniformer.mmcv.utils import TORCH_VERSION, digit_version |
|
from .scatter_gather import scatter_kwargs |
|
|
|
|
|
class MMDistributedDataParallel(DistributedDataParallel): |
|
"""The DDP module that supports DataContainer. |
|
|
|
MMDDP has two main differences with PyTorch DDP: |
|
|
|
- It supports a custom type :class:`DataContainer` which allows more |
|
flexible control of input data. |
|
- It implement two APIs ``train_step()`` and ``val_step()``. |
|
""" |
|
|
|
def to_kwargs(self, inputs, kwargs, device_id): |
|
|
|
|
|
return scatter_kwargs(inputs, kwargs, [device_id], dim=self.dim) |
|
|
|
def scatter(self, inputs, kwargs, device_ids): |
|
return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim) |
|
|
|
def train_step(self, *inputs, **kwargs): |
|
"""train_step() API for module wrapped by DistributedDataParallel. |
|
|
|
This method is basically the same as |
|
``DistributedDataParallel.forward()``, while replacing |
|
``self.module.forward()`` with ``self.module.train_step()``. |
|
It is compatible with PyTorch 1.1 - 1.5. |
|
""" |
|
|
|
|
|
|
|
if ('parrots' not in TORCH_VERSION |
|
and digit_version(TORCH_VERSION) >= digit_version('1.7') |
|
and self.reducer._rebuild_buckets()): |
|
print_log( |
|
'Reducer buckets have been rebuilt in this iteration.', |
|
logger='mmcv') |
|
|
|
if getattr(self, 'require_forward_param_sync', True): |
|
self._sync_params() |
|
if self.device_ids: |
|
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) |
|
if len(self.device_ids) == 1: |
|
output = self.module.train_step(*inputs[0], **kwargs[0]) |
|
else: |
|
outputs = self.parallel_apply( |
|
self._module_copies[:len(inputs)], inputs, kwargs) |
|
output = self.gather(outputs, self.output_device) |
|
else: |
|
output = self.module.train_step(*inputs, **kwargs) |
|
|
|
if torch.is_grad_enabled() and getattr( |
|
self, 'require_backward_grad_sync', True): |
|
if self.find_unused_parameters: |
|
self.reducer.prepare_for_backward(list(_find_tensors(output))) |
|
else: |
|
self.reducer.prepare_for_backward([]) |
|
else: |
|
if ('parrots' not in TORCH_VERSION |
|
and digit_version(TORCH_VERSION) > digit_version('1.2')): |
|
self.require_forward_param_sync = False |
|
return output |
|
|
|
def val_step(self, *inputs, **kwargs): |
|
"""val_step() API for module wrapped by DistributedDataParallel. |
|
|
|
This method is basically the same as |
|
``DistributedDataParallel.forward()``, while replacing |
|
``self.module.forward()`` with ``self.module.val_step()``. |
|
It is compatible with PyTorch 1.1 - 1.5. |
|
""" |
|
|
|
|
|
if ('parrots' not in TORCH_VERSION |
|
and digit_version(TORCH_VERSION) >= digit_version('1.7') |
|
and self.reducer._rebuild_buckets()): |
|
print_log( |
|
'Reducer buckets have been rebuilt in this iteration.', |
|
logger='mmcv') |
|
|
|
if getattr(self, 'require_forward_param_sync', True): |
|
self._sync_params() |
|
if self.device_ids: |
|
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) |
|
if len(self.device_ids) == 1: |
|
output = self.module.val_step(*inputs[0], **kwargs[0]) |
|
else: |
|
outputs = self.parallel_apply( |
|
self._module_copies[:len(inputs)], inputs, kwargs) |
|
output = self.gather(outputs, self.output_device) |
|
else: |
|
output = self.module.val_step(*inputs, **kwargs) |
|
|
|
if torch.is_grad_enabled() and getattr( |
|
self, 'require_backward_grad_sync', True): |
|
if self.find_unused_parameters: |
|
self.reducer.prepare_for_backward(list(_find_tensors(output))) |
|
else: |
|
self.reducer.prepare_for_backward([]) |
|
else: |
|
if ('parrots' not in TORCH_VERSION |
|
and digit_version(TORCH_VERSION) > digit_version('1.2')): |
|
self.require_forward_param_sync = False |
|
return output |
|
|