|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair |
|
|
|
from ..utils import ext_loader |
|
|
|
ext_module = ext_loader.load_ext( |
|
'_ext', ['masked_im2col_forward', 'masked_col2im_forward']) |
|
|
|
|
|
class MaskedConv2dFunction(Function): |
|
|
|
@staticmethod |
|
def symbolic(g, features, mask, weight, bias, padding, stride): |
|
return g.op( |
|
'mmcv::MMCVMaskedConv2d', |
|
features, |
|
mask, |
|
weight, |
|
bias, |
|
padding_i=padding, |
|
stride_i=stride) |
|
|
|
@staticmethod |
|
def forward(ctx, features, mask, weight, bias, padding=0, stride=1): |
|
assert mask.dim() == 3 and mask.size(0) == 1 |
|
assert features.dim() == 4 and features.size(0) == 1 |
|
assert features.size()[2:] == mask.size()[1:] |
|
pad_h, pad_w = _pair(padding) |
|
stride_h, stride_w = _pair(stride) |
|
if stride_h != 1 or stride_w != 1: |
|
raise ValueError( |
|
'Stride could not only be 1 in masked_conv2d currently.') |
|
out_channel, in_channel, kernel_h, kernel_w = weight.size() |
|
|
|
batch_size = features.size(0) |
|
out_h = int( |
|
math.floor((features.size(2) + 2 * pad_h - |
|
(kernel_h - 1) - 1) / stride_h + 1)) |
|
out_w = int( |
|
math.floor((features.size(3) + 2 * pad_w - |
|
(kernel_h - 1) - 1) / stride_w + 1)) |
|
mask_inds = torch.nonzero(mask[0] > 0, as_tuple=False) |
|
output = features.new_zeros(batch_size, out_channel, out_h, out_w) |
|
if mask_inds.numel() > 0: |
|
mask_h_idx = mask_inds[:, 0].contiguous() |
|
mask_w_idx = mask_inds[:, 1].contiguous() |
|
data_col = features.new_zeros(in_channel * kernel_h * kernel_w, |
|
mask_inds.size(0)) |
|
ext_module.masked_im2col_forward( |
|
features, |
|
mask_h_idx, |
|
mask_w_idx, |
|
data_col, |
|
kernel_h=kernel_h, |
|
kernel_w=kernel_w, |
|
pad_h=pad_h, |
|
pad_w=pad_w) |
|
|
|
masked_output = torch.addmm(1, bias[:, None], 1, |
|
weight.view(out_channel, -1), data_col) |
|
ext_module.masked_col2im_forward( |
|
masked_output, |
|
mask_h_idx, |
|
mask_w_idx, |
|
output, |
|
height=out_h, |
|
width=out_w, |
|
channels=out_channel) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
return (None, ) * 5 |
|
|
|
|
|
masked_conv2d = MaskedConv2dFunction.apply |
|
|
|
|
|
class MaskedConv2d(nn.Conv2d): |
|
"""A MaskedConv2d which inherits the official Conv2d. |
|
|
|
The masked forward doesn't implement the backward function and only |
|
supports the stride parameter to be 1 currently. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
bias=True): |
|
super(MaskedConv2d, |
|
self).__init__(in_channels, out_channels, kernel_size, stride, |
|
padding, dilation, groups, bias) |
|
|
|
def forward(self, input, mask=None): |
|
if mask is None: |
|
return super(MaskedConv2d, self).forward(input) |
|
else: |
|
return masked_conv2d(input, mask, self.weight, self.bias, |
|
self.padding) |
|
|