|
|
|
from abc import ABCMeta |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ..utils import constant_init, normal_init |
|
from .conv_module import ConvModule |
|
from .registry import PLUGIN_LAYERS |
|
|
|
|
|
class _NonLocalNd(nn.Module, metaclass=ABCMeta): |
|
"""Basic Non-local module. |
|
|
|
This module is proposed in |
|
"Non-local Neural Networks" |
|
Paper reference: https://arxiv.org/abs/1711.07971 |
|
Code reference: https://github.com/AlexHex7/Non-local_pytorch |
|
|
|
Args: |
|
in_channels (int): Channels of the input feature map. |
|
reduction (int): Channel reduction ratio. Default: 2. |
|
use_scale (bool): Whether to scale pairwise_weight by |
|
`1/sqrt(inter_channels)` when the mode is `embedded_gaussian`. |
|
Default: True. |
|
conv_cfg (None | dict): The config dict for convolution layers. |
|
If not specified, it will use `nn.Conv2d` for convolution layers. |
|
Default: None. |
|
norm_cfg (None | dict): The config dict for normalization layers. |
|
Default: None. (This parameter is only applicable to conv_out.) |
|
mode (str): Options are `gaussian`, `concatenation`, |
|
`embedded_gaussian` and `dot_product`. Default: embedded_gaussian. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
reduction=2, |
|
use_scale=True, |
|
conv_cfg=None, |
|
norm_cfg=None, |
|
mode='embedded_gaussian', |
|
**kwargs): |
|
super(_NonLocalNd, self).__init__() |
|
self.in_channels = in_channels |
|
self.reduction = reduction |
|
self.use_scale = use_scale |
|
self.inter_channels = max(in_channels // reduction, 1) |
|
self.mode = mode |
|
|
|
if mode not in [ |
|
'gaussian', 'embedded_gaussian', 'dot_product', 'concatenation' |
|
]: |
|
raise ValueError("Mode should be in 'gaussian', 'concatenation', " |
|
f"'embedded_gaussian' or 'dot_product', but got " |
|
f'{mode} instead.') |
|
|
|
|
|
|
|
self.g = ConvModule( |
|
self.in_channels, |
|
self.inter_channels, |
|
kernel_size=1, |
|
conv_cfg=conv_cfg, |
|
act_cfg=None) |
|
self.conv_out = ConvModule( |
|
self.inter_channels, |
|
self.in_channels, |
|
kernel_size=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
|
|
if self.mode != 'gaussian': |
|
self.theta = ConvModule( |
|
self.in_channels, |
|
self.inter_channels, |
|
kernel_size=1, |
|
conv_cfg=conv_cfg, |
|
act_cfg=None) |
|
self.phi = ConvModule( |
|
self.in_channels, |
|
self.inter_channels, |
|
kernel_size=1, |
|
conv_cfg=conv_cfg, |
|
act_cfg=None) |
|
|
|
if self.mode == 'concatenation': |
|
self.concat_project = ConvModule( |
|
self.inter_channels * 2, |
|
1, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
act_cfg=dict(type='ReLU')) |
|
|
|
self.init_weights(**kwargs) |
|
|
|
def init_weights(self, std=0.01, zeros_init=True): |
|
if self.mode != 'gaussian': |
|
for m in [self.g, self.theta, self.phi]: |
|
normal_init(m.conv, std=std) |
|
else: |
|
normal_init(self.g.conv, std=std) |
|
if zeros_init: |
|
if self.conv_out.norm_cfg is None: |
|
constant_init(self.conv_out.conv, 0) |
|
else: |
|
constant_init(self.conv_out.norm, 0) |
|
else: |
|
if self.conv_out.norm_cfg is None: |
|
normal_init(self.conv_out.conv, std=std) |
|
else: |
|
normal_init(self.conv_out.norm, std=std) |
|
|
|
def gaussian(self, theta_x, phi_x): |
|
|
|
|
|
|
|
pairwise_weight = torch.matmul(theta_x, phi_x) |
|
pairwise_weight = pairwise_weight.softmax(dim=-1) |
|
return pairwise_weight |
|
|
|
def embedded_gaussian(self, theta_x, phi_x): |
|
|
|
|
|
|
|
pairwise_weight = torch.matmul(theta_x, phi_x) |
|
if self.use_scale: |
|
|
|
pairwise_weight /= theta_x.shape[-1]**0.5 |
|
pairwise_weight = pairwise_weight.softmax(dim=-1) |
|
return pairwise_weight |
|
|
|
def dot_product(self, theta_x, phi_x): |
|
|
|
|
|
|
|
pairwise_weight = torch.matmul(theta_x, phi_x) |
|
pairwise_weight /= pairwise_weight.shape[-1] |
|
return pairwise_weight |
|
|
|
def concatenation(self, theta_x, phi_x): |
|
|
|
|
|
|
|
h = theta_x.size(2) |
|
w = phi_x.size(3) |
|
theta_x = theta_x.repeat(1, 1, 1, w) |
|
phi_x = phi_x.repeat(1, 1, h, 1) |
|
|
|
concat_feature = torch.cat([theta_x, phi_x], dim=1) |
|
pairwise_weight = self.concat_project(concat_feature) |
|
n, _, h, w = pairwise_weight.size() |
|
pairwise_weight = pairwise_weight.view(n, h, w) |
|
pairwise_weight /= pairwise_weight.shape[-1] |
|
|
|
return pairwise_weight |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
|
|
|
|
|
|
n = x.size(0) |
|
|
|
|
|
|
|
|
|
g_x = self.g(x).view(n, self.inter_channels, -1) |
|
g_x = g_x.permute(0, 2, 1) |
|
|
|
|
|
|
|
|
|
if self.mode == 'gaussian': |
|
theta_x = x.view(n, self.in_channels, -1) |
|
theta_x = theta_x.permute(0, 2, 1) |
|
if self.sub_sample: |
|
phi_x = self.phi(x).view(n, self.in_channels, -1) |
|
else: |
|
phi_x = x.view(n, self.in_channels, -1) |
|
elif self.mode == 'concatenation': |
|
theta_x = self.theta(x).view(n, self.inter_channels, -1, 1) |
|
phi_x = self.phi(x).view(n, self.inter_channels, 1, -1) |
|
else: |
|
theta_x = self.theta(x).view(n, self.inter_channels, -1) |
|
theta_x = theta_x.permute(0, 2, 1) |
|
phi_x = self.phi(x).view(n, self.inter_channels, -1) |
|
|
|
pairwise_func = getattr(self, self.mode) |
|
|
|
|
|
|
|
pairwise_weight = pairwise_func(theta_x, phi_x) |
|
|
|
|
|
|
|
|
|
y = torch.matmul(pairwise_weight, g_x) |
|
|
|
|
|
|
|
y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels, |
|
*x.size()[2:]) |
|
|
|
output = x + self.conv_out(y) |
|
|
|
return output |
|
|
|
|
|
class NonLocal1d(_NonLocalNd): |
|
"""1D Non-local module. |
|
|
|
Args: |
|
in_channels (int): Same as `NonLocalND`. |
|
sub_sample (bool): Whether to apply max pooling after pairwise |
|
function (Note that the `sub_sample` is applied on spatial only). |
|
Default: False. |
|
conv_cfg (None | dict): Same as `NonLocalND`. |
|
Default: dict(type='Conv1d'). |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
sub_sample=False, |
|
conv_cfg=dict(type='Conv1d'), |
|
**kwargs): |
|
super(NonLocal1d, self).__init__( |
|
in_channels, conv_cfg=conv_cfg, **kwargs) |
|
|
|
self.sub_sample = sub_sample |
|
|
|
if sub_sample: |
|
max_pool_layer = nn.MaxPool1d(kernel_size=2) |
|
self.g = nn.Sequential(self.g, max_pool_layer) |
|
if self.mode != 'gaussian': |
|
self.phi = nn.Sequential(self.phi, max_pool_layer) |
|
else: |
|
self.phi = max_pool_layer |
|
|
|
|
|
@PLUGIN_LAYERS.register_module() |
|
class NonLocal2d(_NonLocalNd): |
|
"""2D Non-local module. |
|
|
|
Args: |
|
in_channels (int): Same as `NonLocalND`. |
|
sub_sample (bool): Whether to apply max pooling after pairwise |
|
function (Note that the `sub_sample` is applied on spatial only). |
|
Default: False. |
|
conv_cfg (None | dict): Same as `NonLocalND`. |
|
Default: dict(type='Conv2d'). |
|
""" |
|
|
|
_abbr_ = 'nonlocal_block' |
|
|
|
def __init__(self, |
|
in_channels, |
|
sub_sample=False, |
|
conv_cfg=dict(type='Conv2d'), |
|
**kwargs): |
|
super(NonLocal2d, self).__init__( |
|
in_channels, conv_cfg=conv_cfg, **kwargs) |
|
|
|
self.sub_sample = sub_sample |
|
|
|
if sub_sample: |
|
max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2)) |
|
self.g = nn.Sequential(self.g, max_pool_layer) |
|
if self.mode != 'gaussian': |
|
self.phi = nn.Sequential(self.phi, max_pool_layer) |
|
else: |
|
self.phi = max_pool_layer |
|
|
|
|
|
class NonLocal3d(_NonLocalNd): |
|
"""3D Non-local module. |
|
|
|
Args: |
|
in_channels (int): Same as `NonLocalND`. |
|
sub_sample (bool): Whether to apply max pooling after pairwise |
|
function (Note that the `sub_sample` is applied on spatial only). |
|
Default: False. |
|
conv_cfg (None | dict): Same as `NonLocalND`. |
|
Default: dict(type='Conv3d'). |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
sub_sample=False, |
|
conv_cfg=dict(type='Conv3d'), |
|
**kwargs): |
|
super(NonLocal3d, self).__init__( |
|
in_channels, conv_cfg=conv_cfg, **kwargs) |
|
self.sub_sample = sub_sample |
|
|
|
if sub_sample: |
|
max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2)) |
|
self.g = nn.Sequential(self.g, max_pool_layer) |
|
if self.mode != 'gaussian': |
|
self.phi = nn.Sequential(self.phi, max_pool_layer) |
|
else: |
|
self.phi = max_pool_layer |
|
|