|
|
|
import pytest |
|
import torch |
|
from torch.nn.modules import GroupNorm |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from mmpose.models.backbones import ShuffleNetV1 |
|
from mmpose.models.backbones.shufflenet_v1 import ShuffleUnit |
|
|
|
|
|
def is_block(modules): |
|
"""Check if is ResNet building block.""" |
|
if isinstance(modules, (ShuffleUnit, )): |
|
return True |
|
return False |
|
|
|
|
|
def is_norm(modules): |
|
"""Check if is one of the norms.""" |
|
if isinstance(modules, (GroupNorm, _BatchNorm)): |
|
return True |
|
return False |
|
|
|
|
|
def check_norm_state(modules, train_state): |
|
"""Check if norm layer is in correct train state.""" |
|
for mod in modules: |
|
if isinstance(mod, _BatchNorm): |
|
if mod.training != train_state: |
|
return False |
|
return True |
|
|
|
|
|
def test_shufflenetv1_shuffleuint(): |
|
|
|
with pytest.raises(ValueError): |
|
|
|
ShuffleUnit(24, 16, groups=3, first_block=True, combine='test') |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ShuffleUnit(64, 24, groups=4, first_block=True, combine='add') |
|
|
|
|
|
block = ShuffleUnit(24, 24, groups=3, first_block=True, combine='add') |
|
x = torch.randn(1, 24, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size((1, 24, 56, 56)) |
|
|
|
|
|
block = ShuffleUnit(24, 240, groups=3, first_block=True, combine='concat') |
|
x = torch.randn(1, 24, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size((1, 240, 28, 28)) |
|
|
|
|
|
block = ShuffleUnit( |
|
24, 24, groups=3, first_block=True, combine='add', with_cp=True) |
|
assert block.with_cp |
|
x = torch.randn(1, 24, 56, 56) |
|
x.requires_grad = True |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size((1, 24, 56, 56)) |
|
|
|
|
|
def test_shufflenetv1_backbone(): |
|
|
|
with pytest.raises(ValueError): |
|
|
|
ShuffleNetV1(frozen_stages=10) |
|
|
|
with pytest.raises(ValueError): |
|
|
|
ShuffleNetV1(out_indices=[5]) |
|
|
|
with pytest.raises(ValueError): |
|
|
|
ShuffleNetV1(groups=10) |
|
|
|
with pytest.raises(TypeError): |
|
|
|
model = ShuffleNetV1() |
|
model.init_weights(pretrained=1) |
|
|
|
|
|
model = ShuffleNetV1() |
|
model.init_weights() |
|
model.train() |
|
assert check_norm_state(model.modules(), True) |
|
|
|
|
|
frozen_stages = 1 |
|
model = ShuffleNetV1(frozen_stages=frozen_stages, out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
for param in model.conv1.parameters(): |
|
assert param.requires_grad is False |
|
for i in range(frozen_stages): |
|
layer = model.layers[i] |
|
for mod in layer.modules(): |
|
if isinstance(mod, _BatchNorm): |
|
assert mod.training is False |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|
|
|
|
model = ShuffleNetV1(groups=1, out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, _BatchNorm) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 3 |
|
assert feat[0].shape == torch.Size((1, 144, 28, 28)) |
|
assert feat[1].shape == torch.Size((1, 288, 14, 14)) |
|
assert feat[2].shape == torch.Size((1, 576, 7, 7)) |
|
|
|
|
|
model = ShuffleNetV1(groups=2, out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, _BatchNorm) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 3 |
|
assert feat[0].shape == torch.Size((1, 200, 28, 28)) |
|
assert feat[1].shape == torch.Size((1, 400, 14, 14)) |
|
assert feat[2].shape == torch.Size((1, 800, 7, 7)) |
|
|
|
|
|
model = ShuffleNetV1(groups=3, out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, _BatchNorm) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 3 |
|
assert feat[0].shape == torch.Size((1, 240, 28, 28)) |
|
assert feat[1].shape == torch.Size((1, 480, 14, 14)) |
|
assert feat[2].shape == torch.Size((1, 960, 7, 7)) |
|
|
|
|
|
model = ShuffleNetV1(groups=4, out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, _BatchNorm) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 3 |
|
assert feat[0].shape == torch.Size((1, 272, 28, 28)) |
|
assert feat[1].shape == torch.Size((1, 544, 14, 14)) |
|
assert feat[2].shape == torch.Size((1, 1088, 7, 7)) |
|
|
|
|
|
model = ShuffleNetV1(groups=8, out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, _BatchNorm) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 3 |
|
assert feat[0].shape == torch.Size((1, 384, 28, 28)) |
|
assert feat[1].shape == torch.Size((1, 768, 14, 14)) |
|
assert feat[2].shape == torch.Size((1, 1536, 7, 7)) |
|
|
|
|
|
model = ShuffleNetV1( |
|
groups=3, |
|
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True), |
|
out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, GroupNorm) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 3 |
|
assert feat[0].shape == torch.Size((1, 240, 28, 28)) |
|
assert feat[1].shape == torch.Size((1, 480, 14, 14)) |
|
assert feat[2].shape == torch.Size((1, 960, 7, 7)) |
|
|
|
|
|
model = ShuffleNetV1(groups=3, out_indices=(1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, _BatchNorm) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 2 |
|
assert feat[0].shape == torch.Size((1, 480, 14, 14)) |
|
assert feat[1].shape == torch.Size((1, 960, 7, 7)) |
|
|
|
|
|
model = ShuffleNetV1(groups=3, out_indices=(2, )) |
|
model.init_weights() |
|
model.train() |
|
|
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, _BatchNorm) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert isinstance(feat, torch.Tensor) |
|
assert feat.shape == torch.Size((1, 960, 7, 7)) |
|
|
|
|
|
model = ShuffleNetV1(groups=3, with_cp=True) |
|
for m in model.modules(): |
|
if is_block(m): |
|
assert m.with_cp |
|
|
|
|
|
model = ShuffleNetV1(norm_eval=True) |
|
model.init_weights() |
|
model.train() |
|
|
|
assert check_norm_state(model.modules(), False) |
|
|