|
|
|
import pytest |
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule |
|
from mmcv.utils.parrots_wrapper import _BatchNorm |
|
|
|
from mmpose.models.backbones import ResNet, ResNetV1d |
|
from mmpose.models.backbones.resnet import (BasicBlock, Bottleneck, ResLayer, |
|
get_expansion) |
|
|
|
|
|
def is_block(modules): |
|
"""Check if is ResNet building block.""" |
|
if isinstance(modules, (BasicBlock, Bottleneck)): |
|
return True |
|
return False |
|
|
|
|
|
def all_zeros(modules): |
|
"""Check if the weight(and bias) is all zero.""" |
|
weight_zero = torch.equal(modules.weight.data, |
|
torch.zeros_like(modules.weight.data)) |
|
if hasattr(modules, 'bias'): |
|
bias_zero = torch.equal(modules.bias.data, |
|
torch.zeros_like(modules.bias.data)) |
|
else: |
|
bias_zero = True |
|
|
|
return weight_zero and bias_zero |
|
|
|
|
|
def check_norm_state(modules, train_state): |
|
"""Check if norm layer is in correct train state.""" |
|
for mod in modules: |
|
if isinstance(mod, _BatchNorm): |
|
if mod.training != train_state: |
|
return False |
|
return True |
|
|
|
|
|
def test_get_expansion(): |
|
assert get_expansion(Bottleneck, 2) == 2 |
|
assert get_expansion(BasicBlock) == 1 |
|
assert get_expansion(Bottleneck) == 4 |
|
|
|
class MyResBlock(nn.Module): |
|
|
|
expansion = 8 |
|
|
|
assert get_expansion(MyResBlock) == 8 |
|
|
|
|
|
with pytest.raises(TypeError): |
|
get_expansion(Bottleneck, '0') |
|
|
|
|
|
with pytest.raises(TypeError): |
|
|
|
class SomeModule(nn.Module): |
|
pass |
|
|
|
get_expansion(SomeModule) |
|
|
|
|
|
def test_basic_block(): |
|
|
|
with pytest.raises(AssertionError): |
|
BasicBlock(64, 64, expansion=2) |
|
|
|
|
|
block = BasicBlock(64, 64) |
|
assert block.in_channels == 64 |
|
assert block.mid_channels == 64 |
|
assert block.out_channels == 64 |
|
assert block.conv1.in_channels == 64 |
|
assert block.conv1.out_channels == 64 |
|
assert block.conv1.kernel_size == (3, 3) |
|
assert block.conv1.stride == (1, 1) |
|
assert block.conv2.in_channels == 64 |
|
assert block.conv2.out_channels == 64 |
|
assert block.conv2.kernel_size == (3, 3) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
downsample = nn.Sequential( |
|
nn.Conv2d(64, 128, kernel_size=1, bias=False), nn.BatchNorm2d(128)) |
|
block = BasicBlock(64, 128, downsample=downsample) |
|
assert block.in_channels == 64 |
|
assert block.mid_channels == 128 |
|
assert block.out_channels == 128 |
|
assert block.conv1.in_channels == 64 |
|
assert block.conv1.out_channels == 128 |
|
assert block.conv1.kernel_size == (3, 3) |
|
assert block.conv1.stride == (1, 1) |
|
assert block.conv2.in_channels == 128 |
|
assert block.conv2.out_channels == 128 |
|
assert block.conv2.kernel_size == (3, 3) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 128, 56, 56]) |
|
|
|
|
|
downsample = nn.Sequential( |
|
nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False), |
|
nn.BatchNorm2d(128)) |
|
block = BasicBlock(64, 128, stride=2, downsample=downsample) |
|
assert block.in_channels == 64 |
|
assert block.mid_channels == 128 |
|
assert block.out_channels == 128 |
|
assert block.conv1.in_channels == 64 |
|
assert block.conv1.out_channels == 128 |
|
assert block.conv1.kernel_size == (3, 3) |
|
assert block.conv1.stride == (2, 2) |
|
assert block.conv2.in_channels == 128 |
|
assert block.conv2.out_channels == 128 |
|
assert block.conv2.kernel_size == (3, 3) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 128, 28, 28]) |
|
|
|
|
|
block = BasicBlock(64, 64, with_cp=True) |
|
assert block.with_cp |
|
x = torch.randn(1, 64, 56, 56, requires_grad=True) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
def test_bottleneck(): |
|
|
|
with pytest.raises(AssertionError): |
|
Bottleneck(64, 64, style='tensorflow') |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
Bottleneck(64, 64, expansion=3) |
|
|
|
|
|
block = Bottleneck(64, 64, stride=2, style='pytorch') |
|
assert block.conv1.stride == (1, 1) |
|
assert block.conv2.stride == (2, 2) |
|
block = Bottleneck(64, 64, stride=2, style='caffe') |
|
assert block.conv1.stride == (2, 2) |
|
assert block.conv2.stride == (1, 1) |
|
|
|
|
|
block = Bottleneck(64, 64, style='pytorch') |
|
assert block.in_channels == 64 |
|
assert block.mid_channels == 16 |
|
assert block.out_channels == 64 |
|
assert block.conv1.in_channels == 64 |
|
assert block.conv1.out_channels == 16 |
|
assert block.conv1.kernel_size == (1, 1) |
|
assert block.conv2.in_channels == 16 |
|
assert block.conv2.out_channels == 16 |
|
assert block.conv2.kernel_size == (3, 3) |
|
assert block.conv3.in_channels == 16 |
|
assert block.conv3.out_channels == 64 |
|
assert block.conv3.kernel_size == (1, 1) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == (1, 64, 56, 56) |
|
|
|
|
|
downsample = nn.Sequential( |
|
nn.Conv2d(64, 128, kernel_size=1), nn.BatchNorm2d(128)) |
|
block = Bottleneck(64, 128, style='pytorch', downsample=downsample) |
|
assert block.in_channels == 64 |
|
assert block.mid_channels == 32 |
|
assert block.out_channels == 128 |
|
assert block.conv1.in_channels == 64 |
|
assert block.conv1.out_channels == 32 |
|
assert block.conv1.kernel_size == (1, 1) |
|
assert block.conv2.in_channels == 32 |
|
assert block.conv2.out_channels == 32 |
|
assert block.conv2.kernel_size == (3, 3) |
|
assert block.conv3.in_channels == 32 |
|
assert block.conv3.out_channels == 128 |
|
assert block.conv3.kernel_size == (1, 1) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == (1, 128, 56, 56) |
|
|
|
|
|
downsample = nn.Sequential( |
|
nn.Conv2d(64, 128, kernel_size=1, stride=2), nn.BatchNorm2d(128)) |
|
block = Bottleneck( |
|
64, 128, stride=2, style='pytorch', downsample=downsample) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == (1, 128, 28, 28) |
|
|
|
|
|
block = Bottleneck(64, 64, style='pytorch', expansion=2) |
|
assert block.in_channels == 64 |
|
assert block.mid_channels == 32 |
|
assert block.out_channels == 64 |
|
assert block.conv1.in_channels == 64 |
|
assert block.conv1.out_channels == 32 |
|
assert block.conv1.kernel_size == (1, 1) |
|
assert block.conv2.in_channels == 32 |
|
assert block.conv2.out_channels == 32 |
|
assert block.conv2.kernel_size == (3, 3) |
|
assert block.conv3.in_channels == 32 |
|
assert block.conv3.out_channels == 64 |
|
assert block.conv3.kernel_size == (1, 1) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == (1, 64, 56, 56) |
|
|
|
|
|
block = Bottleneck(64, 64, with_cp=True) |
|
block.train() |
|
assert block.with_cp |
|
x = torch.randn(1, 64, 56, 56, requires_grad=True) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
def test_basicblock_reslayer(): |
|
|
|
layer = ResLayer(BasicBlock, 3, 32, 32) |
|
assert len(layer) == 3 |
|
for i in range(3): |
|
assert layer[i].in_channels == 32 |
|
assert layer[i].out_channels == 32 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 32, 56, 56) |
|
|
|
|
|
layer = ResLayer(BasicBlock, 3, 32, 64) |
|
assert len(layer) == 3 |
|
assert layer[0].in_channels == 32 |
|
assert layer[0].out_channels == 64 |
|
assert layer[0].downsample is not None and len(layer[0].downsample) == 2 |
|
assert isinstance(layer[0].downsample[0], nn.Conv2d) |
|
assert layer[0].downsample[0].stride == (1, 1) |
|
for i in range(1, 3): |
|
assert layer[i].in_channels == 64 |
|
assert layer[i].out_channels == 64 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 64, 56, 56) |
|
|
|
|
|
layer = ResLayer(BasicBlock, 3, 32, 64, stride=2) |
|
assert len(layer) == 3 |
|
assert layer[0].in_channels == 32 |
|
assert layer[0].out_channels == 64 |
|
assert layer[0].stride == 2 |
|
assert layer[0].downsample is not None and len(layer[0].downsample) == 2 |
|
assert isinstance(layer[0].downsample[0], nn.Conv2d) |
|
assert layer[0].downsample[0].stride == (2, 2) |
|
for i in range(1, 3): |
|
assert layer[i].in_channels == 64 |
|
assert layer[i].out_channels == 64 |
|
assert layer[i].stride == 1 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 64, 28, 28) |
|
|
|
|
|
layer = ResLayer(BasicBlock, 3, 32, 64, stride=2, avg_down=True) |
|
assert len(layer) == 3 |
|
assert layer[0].in_channels == 32 |
|
assert layer[0].out_channels == 64 |
|
assert layer[0].stride == 2 |
|
assert layer[0].downsample is not None and len(layer[0].downsample) == 3 |
|
assert isinstance(layer[0].downsample[0], nn.AvgPool2d) |
|
assert layer[0].downsample[0].stride == 2 |
|
for i in range(1, 3): |
|
assert layer[i].in_channels == 64 |
|
assert layer[i].out_channels == 64 |
|
assert layer[i].stride == 1 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 64, 28, 28) |
|
|
|
|
|
def test_bottleneck_reslayer(): |
|
|
|
layer = ResLayer(Bottleneck, 3, 32, 32) |
|
assert len(layer) == 3 |
|
for i in range(3): |
|
assert layer[i].in_channels == 32 |
|
assert layer[i].out_channels == 32 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 32, 56, 56) |
|
|
|
|
|
layer = ResLayer(Bottleneck, 3, 32, 64) |
|
assert len(layer) == 3 |
|
assert layer[0].in_channels == 32 |
|
assert layer[0].out_channels == 64 |
|
assert layer[0].stride == 1 |
|
assert layer[0].conv1.out_channels == 16 |
|
assert layer[0].downsample is not None and len(layer[0].downsample) == 2 |
|
assert isinstance(layer[0].downsample[0], nn.Conv2d) |
|
assert layer[0].downsample[0].stride == (1, 1) |
|
for i in range(1, 3): |
|
assert layer[i].in_channels == 64 |
|
assert layer[i].out_channels == 64 |
|
assert layer[i].conv1.out_channels == 16 |
|
assert layer[i].stride == 1 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 64, 56, 56) |
|
|
|
|
|
layer = ResLayer(Bottleneck, 3, 32, 64, stride=2) |
|
assert len(layer) == 3 |
|
assert layer[0].in_channels == 32 |
|
assert layer[0].out_channels == 64 |
|
assert layer[0].stride == 2 |
|
assert layer[0].conv1.out_channels == 16 |
|
assert layer[0].downsample is not None and len(layer[0].downsample) == 2 |
|
assert isinstance(layer[0].downsample[0], nn.Conv2d) |
|
assert layer[0].downsample[0].stride == (2, 2) |
|
for i in range(1, 3): |
|
assert layer[i].in_channels == 64 |
|
assert layer[i].out_channels == 64 |
|
assert layer[i].conv1.out_channels == 16 |
|
assert layer[i].stride == 1 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 64, 28, 28) |
|
|
|
|
|
layer = ResLayer(Bottleneck, 3, 32, 64, stride=2, avg_down=True) |
|
assert len(layer) == 3 |
|
assert layer[0].in_channels == 32 |
|
assert layer[0].out_channels == 64 |
|
assert layer[0].stride == 2 |
|
assert layer[0].conv1.out_channels == 16 |
|
assert layer[0].downsample is not None and len(layer[0].downsample) == 3 |
|
assert isinstance(layer[0].downsample[0], nn.AvgPool2d) |
|
assert layer[0].downsample[0].stride == 2 |
|
for i in range(1, 3): |
|
assert layer[i].in_channels == 64 |
|
assert layer[i].out_channels == 64 |
|
assert layer[i].conv1.out_channels == 16 |
|
assert layer[i].stride == 1 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 64, 28, 28) |
|
|
|
|
|
layer = ResLayer(Bottleneck, 3, 32, 32, expansion=2) |
|
assert len(layer) == 3 |
|
for i in range(3): |
|
assert layer[i].in_channels == 32 |
|
assert layer[i].out_channels == 32 |
|
assert layer[i].stride == 1 |
|
assert layer[i].conv1.out_channels == 16 |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 32, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == (1, 32, 56, 56) |
|
|
|
|
|
def test_resnet(): |
|
"""Test resnet backbone.""" |
|
with pytest.raises(KeyError): |
|
|
|
ResNet(20) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ResNet(50, num_stages=0) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ResNet(50, num_stages=5) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3) |
|
|
|
with pytest.raises(TypeError): |
|
|
|
model = ResNet(50) |
|
model.init_weights(pretrained=0) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ResNet(50, style='tensorflow') |
|
|
|
|
|
model = ResNet(50, norm_eval=True) |
|
model.init_weights() |
|
model.train() |
|
assert check_norm_state(model.modules(), False) |
|
|
|
|
|
model = ResNet(depth=50, norm_eval=True) |
|
model.init_weights('torchvision://resnet50') |
|
model.train() |
|
assert check_norm_state(model.modules(), False) |
|
|
|
|
|
frozen_stages = 1 |
|
model = ResNet(50, frozen_stages=frozen_stages) |
|
model.init_weights() |
|
model.train() |
|
assert model.norm1.training is False |
|
for layer in [model.conv1, model.norm1]: |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
for i in range(1, frozen_stages + 1): |
|
layer = getattr(model, f'layer{i}') |
|
for mod in layer.modules(): |
|
if isinstance(mod, _BatchNorm): |
|
assert mod.training is False |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|
|
|
|
model = ResNet(18, out_indices=(0, 1, 2, 3)) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == (1, 64, 56, 56) |
|
assert feat[1].shape == (1, 128, 28, 28) |
|
assert feat[2].shape == (1, 256, 14, 14) |
|
assert feat[3].shape == (1, 512, 7, 7) |
|
|
|
|
|
model = ResNet(50, out_indices=(0, 1, 2, 3)) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == (1, 256, 56, 56) |
|
assert feat[1].shape == (1, 512, 28, 28) |
|
assert feat[2].shape == (1, 1024, 14, 14) |
|
assert feat[3].shape == (1, 2048, 7, 7) |
|
|
|
|
|
model = ResNet(50, out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 3 |
|
assert feat[0].shape == (1, 256, 56, 56) |
|
assert feat[1].shape == (1, 512, 28, 28) |
|
assert feat[2].shape == (1, 1024, 14, 14) |
|
|
|
|
|
model = ResNet(50, out_indices=(3, )) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert feat.shape == (1, 2048, 7, 7) |
|
|
|
|
|
model = ResNet(50, out_indices=(0, 1, 2, 3), with_cp=True) |
|
for m in model.modules(): |
|
if is_block(m): |
|
assert m.with_cp |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == (1, 256, 56, 56) |
|
assert feat[1].shape == (1, 512, 28, 28) |
|
assert feat[2].shape == (1, 1024, 14, 14) |
|
assert feat[3].shape == (1, 2048, 7, 7) |
|
|
|
|
|
model = ResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True) |
|
model.init_weights() |
|
for m in model.modules(): |
|
if isinstance(m, Bottleneck): |
|
assert all_zeros(m.norm3) |
|
elif isinstance(m, BasicBlock): |
|
assert all_zeros(m.norm2) |
|
|
|
|
|
model = ResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=False) |
|
model.init_weights() |
|
for m in model.modules(): |
|
if isinstance(m, Bottleneck): |
|
assert not all_zeros(m.norm3) |
|
elif isinstance(m, BasicBlock): |
|
assert not all_zeros(m.norm2) |
|
|
|
|
|
def test_resnet_v1d(): |
|
model = ResNetV1d(depth=50, out_indices=(0, 1, 2, 3)) |
|
model.init_weights() |
|
model.train() |
|
|
|
assert len(model.stem) == 3 |
|
for i in range(3): |
|
assert isinstance(model.stem[i], ConvModule) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model.stem(imgs) |
|
assert feat.shape == (1, 64, 112, 112) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == (1, 256, 56, 56) |
|
assert feat[1].shape == (1, 512, 28, 28) |
|
assert feat[2].shape == (1, 1024, 14, 14) |
|
assert feat[3].shape == (1, 2048, 7, 7) |
|
|
|
|
|
frozen_stages = 1 |
|
model = ResNetV1d(depth=50, frozen_stages=frozen_stages) |
|
assert len(model.stem) == 3 |
|
for i in range(3): |
|
assert isinstance(model.stem[i], ConvModule) |
|
model.init_weights() |
|
model.train() |
|
check_norm_state(model.stem, False) |
|
for param in model.stem.parameters(): |
|
assert param.requires_grad is False |
|
for i in range(1, frozen_stages + 1): |
|
layer = getattr(model, f'layer{i}') |
|
for mod in layer.modules(): |
|
if isinstance(mod, _BatchNorm): |
|
assert mod.training is False |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|
|
|
|
def test_resnet_half_channel(): |
|
model = ResNet(50, base_channels=32, out_indices=(0, 1, 2, 3)) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == (1, 128, 56, 56) |
|
assert feat[1].shape == (1, 256, 28, 28) |
|
assert feat[2].shape == (1, 512, 14, 14) |
|
assert feat[3].shape == (1, 1024, 7, 7) |
|
|