|
|
|
import pytest |
|
import torch |
|
|
|
from mmpose.models.backbones import ResNeSt |
|
from mmpose.models.backbones.resnest import Bottleneck as BottleneckS |
|
|
|
|
|
def test_bottleneck(): |
|
with pytest.raises(AssertionError): |
|
|
|
BottleneckS(64, 64, radix=2, reduction_factor=4, style='tensorflow') |
|
|
|
|
|
block = BottleneckS( |
|
64, 256, radix=2, reduction_factor=4, stride=2, style='pytorch') |
|
assert block.avd_layer.stride == 2 |
|
assert block.conv2.channels == 64 |
|
|
|
|
|
block = BottleneckS(64, 64, radix=2, reduction_factor=4) |
|
x = torch.randn(2, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([2, 64, 56, 56]) |
|
|
|
|
|
def test_resnest(): |
|
with pytest.raises(KeyError): |
|
|
|
ResNeSt(depth=18) |
|
|
|
|
|
model = ResNeSt( |
|
depth=50, radix=2, reduction_factor=4, out_indices=(0, 1, 2, 3)) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(2, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([2, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([2, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([2, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([2, 2048, 7, 7]) |
|
|