|
|
|
import pytest |
|
import torch |
|
from torch.nn.modules import GroupNorm |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from mmpose.models.backbones import MobileNetV3 |
|
from mmpose.models.backbones.utils import InvertedResidual |
|
|
|
|
|
def is_norm(modules): |
|
"""Check if is one of the norms.""" |
|
if isinstance(modules, (GroupNorm, _BatchNorm)): |
|
return True |
|
return False |
|
|
|
|
|
def check_norm_state(modules, train_state): |
|
"""Check if norm layer is in correct train state.""" |
|
for mod in modules: |
|
if isinstance(mod, _BatchNorm): |
|
if mod.training != train_state: |
|
return False |
|
return True |
|
|
|
|
|
def test_mobilenetv3_backbone(): |
|
with pytest.raises(TypeError): |
|
|
|
model = MobileNetV3() |
|
model.init_weights(pretrained=0) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
MobileNetV3(arch='others') |
|
|
|
with pytest.raises(ValueError): |
|
|
|
MobileNetV3(arch='small', frozen_stages=12) |
|
|
|
with pytest.raises(ValueError): |
|
|
|
MobileNetV3(arch='big', frozen_stages=16) |
|
|
|
with pytest.raises(ValueError): |
|
|
|
MobileNetV3(arch='small', out_indices=(11, )) |
|
|
|
with pytest.raises(ValueError): |
|
|
|
MobileNetV3(arch='big', out_indices=(15, )) |
|
|
|
|
|
model = MobileNetV3() |
|
model.init_weights() |
|
model.train() |
|
|
|
|
|
frozen_stages = 1 |
|
model = MobileNetV3(frozen_stages=frozen_stages) |
|
model.init_weights() |
|
model.train() |
|
for param in model.conv1.parameters(): |
|
assert param.requires_grad is False |
|
for i in range(1, frozen_stages + 1): |
|
layer = getattr(model, f'layer{i}') |
|
for mod in layer.modules(): |
|
if isinstance(mod, _BatchNorm): |
|
assert mod.training is False |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|
|
|
|
model = MobileNetV3(norm_eval=True, out_indices=range(0, 11)) |
|
model.init_weights() |
|
model.train() |
|
assert check_norm_state(model.modules(), False) |
|
|
|
|
|
model = MobileNetV3(out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 11 |
|
assert feat[0].shape == torch.Size([1, 16, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 24, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 24, 28, 28]) |
|
assert feat[3].shape == torch.Size([1, 40, 14, 14]) |
|
assert feat[4].shape == torch.Size([1, 40, 14, 14]) |
|
assert feat[5].shape == torch.Size([1, 40, 14, 14]) |
|
assert feat[6].shape == torch.Size([1, 48, 14, 14]) |
|
assert feat[7].shape == torch.Size([1, 48, 14, 14]) |
|
assert feat[8].shape == torch.Size([1, 96, 7, 7]) |
|
assert feat[9].shape == torch.Size([1, 96, 7, 7]) |
|
assert feat[10].shape == torch.Size([1, 96, 7, 7]) |
|
|
|
|
|
model = MobileNetV3( |
|
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), |
|
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True)) |
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, GroupNorm) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 11 |
|
assert feat[0].shape == torch.Size([1, 16, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 24, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 24, 28, 28]) |
|
assert feat[3].shape == torch.Size([1, 40, 14, 14]) |
|
assert feat[4].shape == torch.Size([1, 40, 14, 14]) |
|
assert feat[5].shape == torch.Size([1, 40, 14, 14]) |
|
assert feat[6].shape == torch.Size([1, 48, 14, 14]) |
|
assert feat[7].shape == torch.Size([1, 48, 14, 14]) |
|
assert feat[8].shape == torch.Size([1, 96, 7, 7]) |
|
assert feat[9].shape == torch.Size([1, 96, 7, 7]) |
|
assert feat[10].shape == torch.Size([1, 96, 7, 7]) |
|
|
|
|
|
model = MobileNetV3( |
|
arch='big', |
|
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 15 |
|
assert feat[0].shape == torch.Size([1, 16, 112, 112]) |
|
assert feat[1].shape == torch.Size([1, 24, 56, 56]) |
|
assert feat[2].shape == torch.Size([1, 24, 56, 56]) |
|
assert feat[3].shape == torch.Size([1, 40, 28, 28]) |
|
assert feat[4].shape == torch.Size([1, 40, 28, 28]) |
|
assert feat[5].shape == torch.Size([1, 40, 28, 28]) |
|
assert feat[6].shape == torch.Size([1, 80, 14, 14]) |
|
assert feat[7].shape == torch.Size([1, 80, 14, 14]) |
|
assert feat[8].shape == torch.Size([1, 80, 14, 14]) |
|
assert feat[9].shape == torch.Size([1, 80, 14, 14]) |
|
assert feat[10].shape == torch.Size([1, 112, 14, 14]) |
|
assert feat[11].shape == torch.Size([1, 112, 14, 14]) |
|
assert feat[12].shape == torch.Size([1, 160, 14, 14]) |
|
assert feat[13].shape == torch.Size([1, 160, 7, 7]) |
|
assert feat[14].shape == torch.Size([1, 160, 7, 7]) |
|
|
|
|
|
model = MobileNetV3(arch='big', out_indices=(0, )) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert feat.shape == torch.Size([1, 16, 112, 112]) |
|
|
|
|
|
model = MobileNetV3(with_cp=True) |
|
for m in model.modules(): |
|
if isinstance(m, InvertedResidual): |
|
assert m.with_cp |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert feat.shape == torch.Size([1, 96, 7, 7]) |
|
|