show / mmpose-0.29.0 /tests /test_backbones /test_mobilenet_v3.py
camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpose.models.backbones import MobileNetV3
from mmpose.models.backbones.utils import InvertedResidual
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_mobilenetv3_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = MobileNetV3()
model.init_weights(pretrained=0)
with pytest.raises(AssertionError):
# arch must in [small, big]
MobileNetV3(arch='others')
with pytest.raises(ValueError):
# frozen_stages must less than 12 when arch is small
MobileNetV3(arch='small', frozen_stages=12)
with pytest.raises(ValueError):
# frozen_stages must less than 16 when arch is big
MobileNetV3(arch='big', frozen_stages=16)
with pytest.raises(ValueError):
# max out_indices must less than 11 when arch is small
MobileNetV3(arch='small', out_indices=(11, ))
with pytest.raises(ValueError):
# max out_indices must less than 15 when arch is big
MobileNetV3(arch='big', out_indices=(15, ))
# Test MobileNetv3
model = MobileNetV3()
model.init_weights()
model.train()
# Test MobileNetv3 with first stage frozen
frozen_stages = 1
model = MobileNetV3(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for param in model.conv1.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetv3 with norm eval
model = MobileNetV3(norm_eval=True, out_indices=range(0, 11))
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test MobileNetv3 forward with small arch
model = MobileNetV3(out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 11
assert feat[0].shape == torch.Size([1, 16, 56, 56])
assert feat[1].shape == torch.Size([1, 24, 28, 28])
assert feat[2].shape == torch.Size([1, 24, 28, 28])
assert feat[3].shape == torch.Size([1, 40, 14, 14])
assert feat[4].shape == torch.Size([1, 40, 14, 14])
assert feat[5].shape == torch.Size([1, 40, 14, 14])
assert feat[6].shape == torch.Size([1, 48, 14, 14])
assert feat[7].shape == torch.Size([1, 48, 14, 14])
assert feat[8].shape == torch.Size([1, 96, 7, 7])
assert feat[9].shape == torch.Size([1, 96, 7, 7])
assert feat[10].shape == torch.Size([1, 96, 7, 7])
# Test MobileNetv3 forward with small arch and GroupNorm
model = MobileNetV3(
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 11
assert feat[0].shape == torch.Size([1, 16, 56, 56])
assert feat[1].shape == torch.Size([1, 24, 28, 28])
assert feat[2].shape == torch.Size([1, 24, 28, 28])
assert feat[3].shape == torch.Size([1, 40, 14, 14])
assert feat[4].shape == torch.Size([1, 40, 14, 14])
assert feat[5].shape == torch.Size([1, 40, 14, 14])
assert feat[6].shape == torch.Size([1, 48, 14, 14])
assert feat[7].shape == torch.Size([1, 48, 14, 14])
assert feat[8].shape == torch.Size([1, 96, 7, 7])
assert feat[9].shape == torch.Size([1, 96, 7, 7])
assert feat[10].shape == torch.Size([1, 96, 7, 7])
# Test MobileNetv3 forward with big arch
model = MobileNetV3(
arch='big',
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 15
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 24, 56, 56])
assert feat[2].shape == torch.Size([1, 24, 56, 56])
assert feat[3].shape == torch.Size([1, 40, 28, 28])
assert feat[4].shape == torch.Size([1, 40, 28, 28])
assert feat[5].shape == torch.Size([1, 40, 28, 28])
assert feat[6].shape == torch.Size([1, 80, 14, 14])
assert feat[7].shape == torch.Size([1, 80, 14, 14])
assert feat[8].shape == torch.Size([1, 80, 14, 14])
assert feat[9].shape == torch.Size([1, 80, 14, 14])
assert feat[10].shape == torch.Size([1, 112, 14, 14])
assert feat[11].shape == torch.Size([1, 112, 14, 14])
assert feat[12].shape == torch.Size([1, 160, 14, 14])
assert feat[13].shape == torch.Size([1, 160, 7, 7])
assert feat[14].shape == torch.Size([1, 160, 7, 7])
# Test MobileNetv3 forward with big arch
model = MobileNetV3(arch='big', out_indices=(0, ))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size([1, 16, 112, 112])
# Test MobileNetv3 with checkpoint forward
model = MobileNetV3(with_cp=True)
for m in model.modules():
if isinstance(m, InvertedResidual):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size([1, 96, 7, 7])