|
|
|
import torch |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from mmpose.models.backbones import HRNet |
|
from mmpose.models.backbones.hrnet import HRModule |
|
from mmpose.models.backbones.resnet import BasicBlock, Bottleneck |
|
|
|
|
|
def is_block(modules): |
|
"""Check if is HRModule building block.""" |
|
if isinstance(modules, (HRModule, )): |
|
return True |
|
return False |
|
|
|
|
|
def is_norm(modules): |
|
"""Check if is one of the norms.""" |
|
if isinstance(modules, (_BatchNorm, )): |
|
return True |
|
return False |
|
|
|
|
|
def all_zeros(modules): |
|
"""Check if the weight(and bias) is all zero.""" |
|
weight_zero = torch.equal(modules.weight.data, |
|
torch.zeros_like(modules.weight.data)) |
|
if hasattr(modules, 'bias'): |
|
bias_zero = torch.equal(modules.bias.data, |
|
torch.zeros_like(modules.bias.data)) |
|
else: |
|
bias_zero = True |
|
|
|
return weight_zero and bias_zero |
|
|
|
|
|
def test_hrmodule(): |
|
|
|
block = HRModule( |
|
num_branches=1, |
|
blocks=BasicBlock, |
|
num_blocks=(4, ), |
|
in_channels=[ |
|
64, |
|
], |
|
num_channels=(64, )) |
|
|
|
x = torch.randn(2, 64, 56, 56) |
|
x_out = block([x]) |
|
assert x_out[0].shape == torch.Size([2, 64, 56, 56]) |
|
|
|
|
|
def test_hrnet_backbone(): |
|
extra = dict( |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block='BOTTLENECK', |
|
num_blocks=(4, ), |
|
num_channels=(64, )), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(32, 64)), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(32, 64, 128)), |
|
stage4=dict( |
|
num_modules=3, |
|
num_branches=4, |
|
block='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(32, 64, 128, 256))) |
|
|
|
model = HRNet(extra, in_channels=3) |
|
|
|
imgs = torch.randn(2, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 1 |
|
assert feat[0].shape == torch.Size([2, 32, 56, 56]) |
|
|
|
|
|
model = HRNet(extra, in_channels=3, zero_init_residual=True) |
|
model.init_weights() |
|
for m in model.modules(): |
|
if isinstance(m, Bottleneck): |
|
assert all_zeros(m.norm3) |
|
model.train() |
|
|
|
imgs = torch.randn(2, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 1 |
|
assert feat[0].shape == torch.Size([2, 32, 56, 56]) |
|
|
|
|
|
frozen_stages = 3 |
|
model = HRNet(extra, in_channels=3, frozen_stages=frozen_stages) |
|
model.init_weights() |
|
model.train() |
|
if frozen_stages >= 0: |
|
assert model.norm1.training is False |
|
assert model.norm2.training is False |
|
for layer in [model.conv1, model.norm1, model.conv2, model.norm2]: |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|
|
for i in range(1, frozen_stages + 1): |
|
if i == 1: |
|
layer = getattr(model, 'layer1') |
|
else: |
|
layer = getattr(model, f'stage{i}') |
|
for mod in layer.modules(): |
|
if isinstance(mod, _BatchNorm): |
|
assert mod.training is False |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|
|
if i < 4: |
|
layer = getattr(model, f'transition{i}') |
|
for mod in layer.modules(): |
|
if isinstance(mod, _BatchNorm): |
|
assert mod.training is False |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|