|
|
|
import os |
|
import os.path as osp |
|
import tempfile |
|
|
|
import mmcv |
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from mmdet.core import visualization as vis |
|
from mmdet.datasets import (CityscapesDataset, CocoDataset, |
|
CocoPanopticDataset, VOCDataset) |
|
|
|
|
|
def test_color(): |
|
assert vis.color_val_matplotlib(mmcv.Color.blue) == (0., 0., 1.) |
|
assert vis.color_val_matplotlib('green') == (0., 1., 0.) |
|
assert vis.color_val_matplotlib((1, 2, 3)) == (3 / 255, 2 / 255, 1 / 255) |
|
assert vis.color_val_matplotlib(100) == (100 / 255, 100 / 255, 100 / 255) |
|
assert vis.color_val_matplotlib(np.zeros(3, dtype=np.int)) == (0., 0., 0.) |
|
|
|
with pytest.raises(TypeError): |
|
vis.color_val_matplotlib([255, 255, 255]) |
|
|
|
with pytest.raises(TypeError): |
|
vis.color_val_matplotlib(1.0) |
|
|
|
with pytest.raises(AssertionError): |
|
vis.color_val_matplotlib((0, 0, 500)) |
|
|
|
|
|
def test_imshow_det_bboxes(): |
|
tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image', |
|
'image.jpg') |
|
image = np.ones((10, 10, 3), np.uint8) |
|
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) |
|
label = np.array([0, 1]) |
|
out_image = vis.imshow_det_bboxes( |
|
image, bbox, label, out_file=tmp_filename, show=False) |
|
assert osp.isfile(tmp_filename) |
|
assert image.shape == out_image.shape |
|
assert not np.allclose(image, out_image) |
|
os.remove(tmp_filename) |
|
|
|
|
|
image = np.ones((10, 10), np.uint8) |
|
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) |
|
label = np.array([0, 1]) |
|
out_image = vis.imshow_det_bboxes( |
|
image, bbox, label, out_file=tmp_filename, show=False) |
|
assert osp.isfile(tmp_filename) |
|
assert image.shape == out_image.shape[:2] |
|
os.remove(tmp_filename) |
|
|
|
|
|
image = np.ones((10, 10, 3), np.uint8) |
|
bbox = np.ones((0, 4)) |
|
label = np.ones((0, )) |
|
vis.imshow_det_bboxes( |
|
image, bbox, label, out_file=tmp_filename, show=False) |
|
assert osp.isfile(tmp_filename) |
|
os.remove(tmp_filename) |
|
|
|
|
|
image = np.ones((10, 10, 3), np.uint8) |
|
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) |
|
label = np.array([0, 1]) |
|
segms = np.random.random((2, 10, 10)) > 0.5 |
|
segms = np.array(segms, np.int32) |
|
vis.imshow_det_bboxes( |
|
image, bbox, label, segms, out_file=tmp_filename, show=False) |
|
assert osp.isfile(tmp_filename) |
|
os.remove(tmp_filename) |
|
|
|
|
|
with pytest.raises(AttributeError): |
|
segms = torch.tensor(segms) |
|
vis.imshow_det_bboxes(image, bbox, label, segms, show=False) |
|
|
|
|
|
def test_imshow_gt_det_bboxes(): |
|
tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image', |
|
'image.jpg') |
|
image = np.ones((10, 10, 3), np.uint8) |
|
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) |
|
label = np.array([0, 1]) |
|
annotation = dict(gt_bboxes=bbox, gt_labels=label) |
|
det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]]) |
|
result = [det_result] |
|
out_image = vis.imshow_gt_det_bboxes( |
|
image, annotation, result, out_file=tmp_filename, show=False) |
|
assert osp.isfile(tmp_filename) |
|
assert image.shape == out_image.shape |
|
assert not np.allclose(image, out_image) |
|
os.remove(tmp_filename) |
|
|
|
|
|
image = np.ones((10, 10), np.uint8) |
|
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) |
|
label = np.array([0, 1]) |
|
annotation = dict(gt_bboxes=bbox, gt_labels=label) |
|
det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]]) |
|
result = [det_result] |
|
vis.imshow_gt_det_bboxes( |
|
image, annotation, result, out_file=tmp_filename, show=False) |
|
assert osp.isfile(tmp_filename) |
|
os.remove(tmp_filename) |
|
|
|
|
|
gt_mask = np.ones((2, 10, 10)) |
|
annotation['gt_masks'] = gt_mask |
|
vis.imshow_gt_det_bboxes( |
|
image, annotation, result, out_file=tmp_filename, show=False) |
|
assert osp.isfile(tmp_filename) |
|
os.remove(tmp_filename) |
|
|
|
|
|
gt_mask = torch.ones((2, 10, 10)) |
|
annotation['gt_masks'] = gt_mask |
|
vis.imshow_gt_det_bboxes( |
|
image, annotation, result, out_file=tmp_filename, show=False) |
|
assert osp.isfile(tmp_filename) |
|
os.remove(tmp_filename) |
|
|
|
|
|
annotation['gt_masks'] = [] |
|
with pytest.raises(TypeError): |
|
vis.imshow_gt_det_bboxes(image, annotation, result, show=False) |
|
|
|
|
|
def test_palette(): |
|
assert vis.palette_val([(1, 2, 3)])[0] == (1 / 255, 2 / 255, 3 / 255) |
|
|
|
|
|
palette = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] |
|
palette_ = vis.get_palette(palette, 3) |
|
for color, color_ in zip(palette, palette_): |
|
assert color == color_ |
|
|
|
|
|
palette = vis.get_palette((1, 2, 3), 3) |
|
assert len(palette) == 3 |
|
for color in palette: |
|
assert color == (1, 2, 3) |
|
|
|
|
|
palette = vis.get_palette('red', 3) |
|
assert len(palette) == 3 |
|
for color in palette: |
|
assert color == (255, 0, 0) |
|
|
|
|
|
palette = vis.get_palette('coco', len(CocoDataset.CLASSES)) |
|
assert len(palette) == len(CocoDataset.CLASSES) |
|
assert palette[0] == (220, 20, 60) |
|
palette = vis.get_palette('coco', len(CocoPanopticDataset.CLASSES)) |
|
assert len(palette) == len(CocoPanopticDataset.CLASSES) |
|
assert palette[-1] == (250, 141, 255) |
|
palette = vis.get_palette('voc', len(VOCDataset.CLASSES)) |
|
assert len(palette) == len(VOCDataset.CLASSES) |
|
assert palette[0] == (106, 0, 228) |
|
palette = vis.get_palette('citys', len(CityscapesDataset.CLASSES)) |
|
assert len(palette) == len(CityscapesDataset.CLASSES) |
|
assert palette[0] == (220, 20, 60) |
|
|
|
|
|
palette1 = vis.get_palette('random', 3) |
|
palette2 = vis.get_palette(None, 3) |
|
for color1, color2 in zip(palette1, palette2): |
|
assert isinstance(color1, tuple) |
|
assert isinstance(color2, tuple) |
|
assert color1 == color2 |
|
|