|
|
|
from mmcv.runner.hooks import HOOKS |
|
from mmcv.runner.hooks.lr_updater import (CosineAnnealingLrUpdaterHook, |
|
annealing_cos) |
|
|
|
|
|
@HOOKS.register_module() |
|
class YOLOXLrUpdaterHook(CosineAnnealingLrUpdaterHook): |
|
"""YOLOX learning rate scheme. |
|
|
|
There are two main differences between YOLOXLrUpdaterHook |
|
and CosineAnnealingLrUpdaterHook. |
|
|
|
1. When the current running epoch is greater than |
|
`max_epoch-last_epoch`, a fixed learning rate will be used |
|
2. The exp warmup scheme is different with LrUpdaterHook in MMCV |
|
|
|
Args: |
|
num_last_epochs (int): The number of epochs with a fixed learning rate |
|
before the end of the training. |
|
""" |
|
|
|
def __init__(self, num_last_epochs, **kwargs): |
|
self.num_last_epochs = num_last_epochs |
|
super(YOLOXLrUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_warmup_lr(self, cur_iters): |
|
|
|
def _get_warmup_lr(cur_iters, regular_lr): |
|
|
|
k = self.warmup_ratio * pow( |
|
(cur_iters + 1) / float(self.warmup_iters), 2) |
|
warmup_lr = [_lr * k for _lr in regular_lr] |
|
return warmup_lr |
|
|
|
if isinstance(self.base_lr, dict): |
|
lr_groups = {} |
|
for key, base_lr in self.base_lr.items(): |
|
lr_groups[key] = _get_warmup_lr(cur_iters, base_lr) |
|
return lr_groups |
|
else: |
|
return _get_warmup_lr(cur_iters, self.base_lr) |
|
|
|
def get_lr(self, runner, base_lr): |
|
last_iter = len(runner.data_loader) * self.num_last_epochs |
|
|
|
if self.by_epoch: |
|
progress = runner.epoch |
|
max_progress = runner.max_epochs |
|
else: |
|
progress = runner.iter |
|
max_progress = runner.max_iters |
|
|
|
progress += 1 |
|
|
|
if self.min_lr_ratio is not None: |
|
target_lr = base_lr * self.min_lr_ratio |
|
else: |
|
target_lr = self.min_lr |
|
|
|
if progress >= max_progress - last_iter: |
|
|
|
return target_lr |
|
else: |
|
return annealing_cos( |
|
base_lr, target_lr, (progress - self.warmup_iters) / |
|
(max_progress - self.warmup_iters - last_iter)) |
|
|