|
|
|
"""Tests the Assigner objects. |
|
|
|
CommandLine: |
|
pytest tests/test_utils/test_assigner.py |
|
xdoctest tests/test_utils/test_assigner.py zero |
|
""" |
|
import pytest |
|
import torch |
|
|
|
from mmdet.core.bbox.assigners import (ApproxMaxIoUAssigner, |
|
CenterRegionAssigner, HungarianAssigner, |
|
MaskHungarianAssigner, MaxIoUAssigner, |
|
PointAssigner, SimOTAAssigner, |
|
TaskAlignedAssigner, UniformAssigner) |
|
|
|
|
|
def test_max_iou_assigner(): |
|
self = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_labels = torch.LongTensor([2, 3]) |
|
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) |
|
assert len(assign_result.gt_inds) == 4 |
|
assert len(assign_result.labels) == 4 |
|
|
|
expected_gt_inds = torch.LongTensor([1, 0, 2, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_max_iou_assigner_with_ignore(): |
|
self = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
ignore_wrt_candidates=False, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[30, 32, 40, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_bboxes_ignore = torch.Tensor([ |
|
[30, 30, 40, 40], |
|
]) |
|
assign_result = self.assign( |
|
bboxes, gt_bboxes, gt_bboxes_ignore=gt_bboxes_ignore) |
|
|
|
expected_gt_inds = torch.LongTensor([1, 0, 2, -1]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_max_iou_assigner_with_empty_gt(): |
|
"""Test corner case where an image might have no true detections.""" |
|
self = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.empty(0, 4) |
|
assign_result = self.assign(bboxes, gt_bboxes) |
|
|
|
expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_max_iou_assigner_with_empty_boxes(): |
|
"""Test corner case where a network might predict no boxes.""" |
|
self = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
) |
|
bboxes = torch.empty((0, 4)) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_labels = torch.LongTensor([2, 3]) |
|
|
|
|
|
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) |
|
assert len(assign_result.gt_inds) == 0 |
|
assert tuple(assign_result.labels.shape) == (0, ) |
|
|
|
|
|
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=None) |
|
assert len(assign_result.gt_inds) == 0 |
|
assert assign_result.labels is None |
|
|
|
|
|
def test_max_iou_assigner_with_empty_boxes_and_ignore(): |
|
"""Test corner case where a network might predict no boxes and |
|
ignore_iof_thr is on.""" |
|
self = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
) |
|
bboxes = torch.empty((0, 4)) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_bboxes_ignore = torch.Tensor([ |
|
[30, 30, 40, 40], |
|
]) |
|
gt_labels = torch.LongTensor([2, 3]) |
|
|
|
|
|
assign_result = self.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_labels=gt_labels, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
assert len(assign_result.gt_inds) == 0 |
|
assert tuple(assign_result.labels.shape) == (0, ) |
|
|
|
|
|
assign_result = self.assign( |
|
bboxes, gt_bboxes, gt_labels=None, gt_bboxes_ignore=gt_bboxes_ignore) |
|
assert len(assign_result.gt_inds) == 0 |
|
assert assign_result.labels is None |
|
|
|
|
|
def test_max_iou_assigner_with_empty_boxes_and_gt(): |
|
"""Test corner case where a network might predict no boxes and no gt.""" |
|
self = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
) |
|
bboxes = torch.empty((0, 4)) |
|
gt_bboxes = torch.empty((0, 4)) |
|
assign_result = self.assign(bboxes, gt_bboxes) |
|
assert len(assign_result.gt_inds) == 0 |
|
|
|
|
|
def test_point_assigner(): |
|
self = PointAssigner() |
|
points = torch.FloatTensor([ |
|
[0, 0, 1], |
|
[10, 10, 1], |
|
[5, 5, 1], |
|
[32, 32, 1], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
assign_result = self.assign(points, gt_bboxes) |
|
expected_gt_inds = torch.LongTensor([1, 2, 1, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_point_assigner_with_empty_gt(): |
|
"""Test corner case where an image might have no true detections.""" |
|
self = PointAssigner() |
|
points = torch.FloatTensor([ |
|
[0, 0, 1], |
|
[10, 10, 1], |
|
[5, 5, 1], |
|
[32, 32, 1], |
|
]) |
|
gt_bboxes = torch.FloatTensor([]) |
|
assign_result = self.assign(points, gt_bboxes) |
|
|
|
expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_point_assigner_with_empty_boxes_and_gt(): |
|
"""Test corner case where an image might predict no points and no gt.""" |
|
self = PointAssigner() |
|
points = torch.FloatTensor([]) |
|
gt_bboxes = torch.FloatTensor([]) |
|
assign_result = self.assign(points, gt_bboxes) |
|
assert len(assign_result.gt_inds) == 0 |
|
|
|
|
|
def test_approx_iou_assigner(): |
|
self = ApproxMaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
approxs_per_octave = 1 |
|
approxs = bboxes |
|
squares = bboxes |
|
assign_result = self.assign(approxs, squares, approxs_per_octave, |
|
gt_bboxes) |
|
|
|
expected_gt_inds = torch.LongTensor([1, 0, 2, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_approx_iou_assigner_with_empty_gt(): |
|
"""Test corner case where an image might have no true detections.""" |
|
self = ApproxMaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([]) |
|
approxs_per_octave = 1 |
|
approxs = bboxes |
|
squares = bboxes |
|
assign_result = self.assign(approxs, squares, approxs_per_octave, |
|
gt_bboxes) |
|
|
|
expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_approx_iou_assigner_with_empty_boxes(): |
|
"""Test corner case where an network might predict no boxes.""" |
|
self = ApproxMaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
) |
|
bboxes = torch.empty((0, 4)) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
approxs_per_octave = 1 |
|
approxs = bboxes |
|
squares = bboxes |
|
assign_result = self.assign(approxs, squares, approxs_per_octave, |
|
gt_bboxes) |
|
assert len(assign_result.gt_inds) == 0 |
|
|
|
|
|
def test_approx_iou_assigner_with_empty_boxes_and_gt(): |
|
"""Test corner case where an network might predict no boxes and no gt.""" |
|
self = ApproxMaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
) |
|
bboxes = torch.empty((0, 4)) |
|
gt_bboxes = torch.empty((0, 4)) |
|
approxs_per_octave = 1 |
|
approxs = bboxes |
|
squares = bboxes |
|
assign_result = self.assign(approxs, squares, approxs_per_octave, |
|
gt_bboxes) |
|
assert len(assign_result.gt_inds) == 0 |
|
|
|
|
|
def test_random_assign_result(): |
|
"""Test random instantiation of assign result to catch corner cases.""" |
|
from mmdet.core.bbox.assigners.assign_result import AssignResult |
|
AssignResult.random() |
|
|
|
AssignResult.random(num_gts=0, num_preds=0) |
|
AssignResult.random(num_gts=0, num_preds=3) |
|
AssignResult.random(num_gts=3, num_preds=3) |
|
AssignResult.random(num_gts=0, num_preds=3) |
|
AssignResult.random(num_gts=7, num_preds=7) |
|
AssignResult.random(num_gts=7, num_preds=64) |
|
AssignResult.random(num_gts=24, num_preds=3) |
|
|
|
|
|
def test_center_region_assigner(): |
|
self = CenterRegionAssigner(pos_scale=0.3, neg_scale=1) |
|
bboxes = torch.FloatTensor([[0, 0, 10, 10], [10, 10, 20, 20], [8, 8, 9, |
|
9]]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 11, 11], |
|
[10, 10, 20, 20], |
|
[4.5, 4.5, 5.5, 5.5], |
|
[0, 0, 10, 10], |
|
]) |
|
gt_labels = torch.LongTensor([2, 3, 4, 5]) |
|
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) |
|
assert len(assign_result.gt_inds) == 3 |
|
assert len(assign_result.labels) == 3 |
|
expected_gt_inds = torch.LongTensor([4, 2, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
shadowed_labels = assign_result.get_extra_property('shadowed_labels') |
|
|
|
assert torch.any(shadowed_labels == torch.LongTensor([[2, 2]])) |
|
|
|
assert torch.any(shadowed_labels == torch.LongTensor([[2, 5]])) |
|
|
|
|
|
assert torch.any(shadowed_labels == torch.LongTensor([[0, 2]])) |
|
|
|
|
|
def test_center_region_assigner_with_ignore(): |
|
self = CenterRegionAssigner( |
|
pos_scale=0.5, |
|
neg_scale=1, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
]) |
|
gt_bboxes_ignore = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
]) |
|
gt_labels = torch.LongTensor([1, 2]) |
|
assign_result = self.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_labels=gt_labels) |
|
assert len(assign_result.gt_inds) == 2 |
|
assert len(assign_result.labels) == 2 |
|
|
|
expected_gt_inds = torch.LongTensor([-1, 2]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_center_region_assigner_with_empty_bboxes(): |
|
self = CenterRegionAssigner( |
|
pos_scale=0.5, |
|
neg_scale=1, |
|
) |
|
bboxes = torch.empty((0, 4)).float() |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
]) |
|
gt_labels = torch.LongTensor([1, 2]) |
|
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) |
|
assert assign_result.gt_inds is None or assign_result.gt_inds.numel() == 0 |
|
assert assign_result.labels is None or assign_result.labels.numel() == 0 |
|
|
|
|
|
def test_center_region_assigner_with_empty_gts(): |
|
self = CenterRegionAssigner( |
|
pos_scale=0.5, |
|
neg_scale=1, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
]) |
|
gt_bboxes = torch.empty((0, 4)).float() |
|
gt_labels = torch.empty((0, )).long() |
|
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) |
|
assert len(assign_result.gt_inds) == 2 |
|
expected_gt_inds = torch.LongTensor([0, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_hungarian_match_assigner(): |
|
self = HungarianAssigner() |
|
assert self.iou_cost.iou_mode == 'giou' |
|
|
|
|
|
bbox_pred = torch.rand((10, 4)) |
|
cls_pred = torch.rand((10, 81)) |
|
gt_bboxes = torch.empty((0, 4)).float() |
|
gt_labels = torch.empty((0, )).long() |
|
img_meta = dict(img_shape=(10, 8, 3)) |
|
assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds == 0) |
|
assert torch.all(assign_result.labels == -1) |
|
|
|
|
|
gt_bboxes = torch.FloatTensor([[0, 0, 5, 7], [3, 5, 7, 8]]) |
|
gt_labels = torch.LongTensor([1, 20]) |
|
assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels, |
|
img_meta) |
|
|
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_bboxes.size(0) |
|
|
|
|
|
self = HungarianAssigner( |
|
iou_cost=dict(type='IoUCost', iou_mode='iou', weight=1.0)) |
|
assert self.iou_cost.iou_mode == 'iou' |
|
assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_bboxes.size(0) |
|
|
|
|
|
self = HungarianAssigner( |
|
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=1.0), |
|
cls_cost=dict(type='FocalLossCost', weight=1.)) |
|
assert self.iou_cost.iou_mode == 'giou' |
|
assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_bboxes.size(0) |
|
|
|
|
|
def test_uniform_assigner(): |
|
self = UniformAssigner(0.15, 0.7, 1) |
|
pred_bbox = torch.FloatTensor([ |
|
[1, 1, 12, 8], |
|
[4, 4, 20, 20], |
|
[1, 5, 15, 15], |
|
[30, 5, 32, 42], |
|
]) |
|
anchor = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_labels = torch.LongTensor([2, 3]) |
|
assign_result = self.assign( |
|
pred_bbox, anchor, gt_bboxes, gt_labels=gt_labels) |
|
assert len(assign_result.gt_inds) == 4 |
|
assert len(assign_result.labels) == 4 |
|
|
|
expected_gt_inds = torch.LongTensor([-1, 0, 2, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_uniform_assigner_with_empty_gt(): |
|
"""Test corner case where an image might have no true detections.""" |
|
self = UniformAssigner(0.15, 0.7, 1) |
|
pred_bbox = torch.FloatTensor([ |
|
[1, 1, 12, 8], |
|
[4, 4, 20, 20], |
|
[1, 5, 15, 15], |
|
[30, 5, 32, 42], |
|
]) |
|
anchor = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.empty(0, 4) |
|
assign_result = self.assign(pred_bbox, anchor, gt_bboxes) |
|
|
|
expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_uniform_assigner_with_empty_boxes(): |
|
"""Test corner case where a network might predict no boxes.""" |
|
self = UniformAssigner(0.15, 0.7, 1) |
|
pred_bbox = torch.empty((0, 4)) |
|
anchor = torch.empty((0, 4)) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_labels = torch.LongTensor([2, 3]) |
|
|
|
|
|
assign_result = self.assign( |
|
pred_bbox, anchor, gt_bboxes, gt_labels=gt_labels) |
|
assert len(assign_result.gt_inds) == 0 |
|
assert tuple(assign_result.labels.shape) == (0, ) |
|
|
|
|
|
assign_result = self.assign(pred_bbox, anchor, gt_bboxes, gt_labels=None) |
|
assert len(assign_result.gt_inds) == 0 |
|
|
|
|
|
def test_sim_ota_assigner(): |
|
self = SimOTAAssigner( |
|
center_radius=2.5, candidate_topk=1, iou_weight=3.0, cls_weight=1.0) |
|
pred_scores = torch.FloatTensor([[0.2], [0.8]]) |
|
priors = torch.Tensor([[0, 12, 23, 34], [4, 5, 6, 7]]) |
|
decoded_bboxes = torch.Tensor([[[30, 40, 50, 60]], [[4, 5, 6, 7]]]) |
|
gt_bboxes = torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
gt_labels = torch.LongTensor([2]) |
|
assign_result = self.assign(pred_scores, priors, decoded_bboxes, gt_bboxes, |
|
gt_labels) |
|
|
|
expected_gt_inds = torch.LongTensor([0, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_task_aligned_assigner(): |
|
with pytest.raises(AssertionError): |
|
TaskAlignedAssigner(topk=0) |
|
|
|
self = TaskAlignedAssigner(topk=13) |
|
pred_score = torch.FloatTensor([[0.1, 0.2], [0.2, 0.3], [0.3, 0.4], |
|
[0.4, 0.5]]) |
|
pred_bbox = torch.FloatTensor([ |
|
[1, 1, 12, 8], |
|
[4, 4, 20, 20], |
|
[1, 5, 15, 15], |
|
[30, 5, 32, 42], |
|
]) |
|
anchor = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_labels = torch.LongTensor([0, 1]) |
|
assign_result = self.assign( |
|
pred_score, |
|
pred_bbox, |
|
anchor, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels) |
|
assert len(assign_result.gt_inds) == 4 |
|
assert len(assign_result.labels) == 4 |
|
|
|
|
|
gt_bboxes = torch.empty(0, 4) |
|
gt_labels = torch.empty(0, 2) |
|
assign_result = self.assign( |
|
pred_score, pred_bbox, anchor, gt_bboxes=gt_bboxes) |
|
expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) |
|
assert torch.all(assign_result.gt_inds == expected_gt_inds) |
|
|
|
|
|
def test_mask_hungarian_match_assigner(): |
|
|
|
assigner_cfg = dict( |
|
cls_cost=dict(type='ClassificationCost', weight=1.0), |
|
mask_cost=dict(type='FocalLossCost', weight=20.0, binary_input=True), |
|
dice_cost=dict(type='DiceCost', weight=1.0, pred_act=True, eps=1.0)) |
|
self = MaskHungarianAssigner(**assigner_cfg) |
|
cls_pred = torch.rand((10, 133)) |
|
mask_pred = torch.rand((10, 50, 50)) |
|
|
|
gt_labels = torch.empty((0, )).long() |
|
gt_masks = torch.empty((0, 50, 50)).float() |
|
img_meta = None |
|
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds == 0) |
|
assert torch.all(assign_result.labels == -1) |
|
|
|
|
|
gt_labels = torch.LongTensor([10, 100]) |
|
gt_masks = torch.zeros((2, 50, 50)).long() |
|
gt_masks[0, :25] = 1 |
|
gt_masks[0, 25:] = 1 |
|
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_labels.size(0) |
|
|
|
|
|
assigner_cfg = dict( |
|
cls_cost=dict(type='ClassificationCost', weight=1.0), |
|
mask_cost=dict(type='FocalLossCost', weight=0.0, binary_input=True), |
|
dice_cost=dict(type='DiceCost', weight=0.0, pred_act=True, eps=1.0)) |
|
self = MaskHungarianAssigner(**assigner_cfg) |
|
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_labels.size(0) |
|
|
|
|
|
assigner_cfg = dict( |
|
cls_cost=dict(type='ClassificationCost', weight=0.0), |
|
mask_cost=dict(type='FocalLossCost', weight=1.0, binary_input=True), |
|
dice_cost=dict(type='DiceCost', weight=0.0, pred_act=True, eps=1.0)) |
|
self = MaskHungarianAssigner(**assigner_cfg) |
|
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_labels.size(0) |
|
|
|
|
|
assigner_cfg = dict( |
|
cls_cost=dict(type='ClassificationCost', weight=0.0), |
|
mask_cost=dict(type='FocalLossCost', weight=0.0, binary_input=True), |
|
dice_cost=dict(type='DiceCost', weight=1.0, pred_act=True, eps=1.0)) |
|
self = MaskHungarianAssigner(**assigner_cfg) |
|
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_labels.size(0) |
|
|
|
|
|
assigner_cfg = dict( |
|
cls_cost=dict(type='ClassificationCost', weight=0.0), |
|
mask_cost=dict(type='FocalLossCost', weight=0.0, binary_input=True), |
|
dice_cost=dict( |
|
type='DiceCost', |
|
weight=1.0, |
|
pred_act=True, |
|
eps=1.0, |
|
naive_dice=False)) |
|
self = MaskHungarianAssigner(**assigner_cfg) |
|
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_labels.size(0) |
|
|
|
|
|
assigner_cfg = dict( |
|
cls_cost=dict(type='ClassificationCost', weight=0.0), |
|
mask_cost=dict( |
|
type='CrossEntropyLossCost', weight=1.0, use_sigmoid=True), |
|
dice_cost=dict(type='DiceCost', weight=0.0, pred_act=True, eps=1.0)) |
|
self = MaskHungarianAssigner(**assigner_cfg) |
|
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks, |
|
img_meta) |
|
assert torch.all(assign_result.gt_inds > -1) |
|
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0) |
|
assert (assign_result.labels > -1).sum() == gt_labels.size(0) |
|
|
|
|
|
assigner_cfg = dict( |
|
cls_cost=dict(type='ClassificationCost', weight=0.0), |
|
mask_cost=dict( |
|
type='CrossEntropyLossCost', weight=1.0, use_sigmoid=False), |
|
dice_cost=dict(type='DiceCost', weight=0.0, pred_act=True, eps=1.0)) |
|
with pytest.raises(AssertionError): |
|
self = MaskHungarianAssigner(**assigner_cfg) |
|
|