camenduru's picture
thanks to show ❤
3bbb319
raw
history blame
23.1 kB
# Copyright (c) OpenMMLab. All rights reserved.
"""Tests the Assigner objects.
CommandLine:
pytest tests/test_utils/test_assigner.py
xdoctest tests/test_utils/test_assigner.py zero
"""
import pytest
import torch
from mmdet.core.bbox.assigners import (ApproxMaxIoUAssigner,
CenterRegionAssigner, HungarianAssigner,
MaskHungarianAssigner, MaxIoUAssigner,
PointAssigner, SimOTAAssigner,
TaskAlignedAssigner, UniformAssigner)
def test_max_iou_assigner():
self = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_labels = torch.LongTensor([2, 3])
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
assert len(assign_result.gt_inds) == 4
assert len(assign_result.labels) == 4
expected_gt_inds = torch.LongTensor([1, 0, 2, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_max_iou_assigner_with_ignore():
self = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
ignore_wrt_candidates=False,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[30, 32, 40, 42],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_bboxes_ignore = torch.Tensor([
[30, 30, 40, 40],
])
assign_result = self.assign(
bboxes, gt_bboxes, gt_bboxes_ignore=gt_bboxes_ignore)
expected_gt_inds = torch.LongTensor([1, 0, 2, -1])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_max_iou_assigner_with_empty_gt():
"""Test corner case where an image might have no true detections."""
self = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.empty(0, 4)
assign_result = self.assign(bboxes, gt_bboxes)
expected_gt_inds = torch.LongTensor([0, 0, 0, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_max_iou_assigner_with_empty_boxes():
"""Test corner case where a network might predict no boxes."""
self = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.empty((0, 4))
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_labels = torch.LongTensor([2, 3])
# Test with gt_labels
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
assert len(assign_result.gt_inds) == 0
assert tuple(assign_result.labels.shape) == (0, )
# Test without gt_labels
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=None)
assert len(assign_result.gt_inds) == 0
assert assign_result.labels is None
def test_max_iou_assigner_with_empty_boxes_and_ignore():
"""Test corner case where a network might predict no boxes and
ignore_iof_thr is on."""
self = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
)
bboxes = torch.empty((0, 4))
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_bboxes_ignore = torch.Tensor([
[30, 30, 40, 40],
])
gt_labels = torch.LongTensor([2, 3])
# Test with gt_labels
assign_result = self.assign(
bboxes,
gt_bboxes,
gt_labels=gt_labels,
gt_bboxes_ignore=gt_bboxes_ignore)
assert len(assign_result.gt_inds) == 0
assert tuple(assign_result.labels.shape) == (0, )
# Test without gt_labels
assign_result = self.assign(
bboxes, gt_bboxes, gt_labels=None, gt_bboxes_ignore=gt_bboxes_ignore)
assert len(assign_result.gt_inds) == 0
assert assign_result.labels is None
def test_max_iou_assigner_with_empty_boxes_and_gt():
"""Test corner case where a network might predict no boxes and no gt."""
self = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.empty((0, 4))
gt_bboxes = torch.empty((0, 4))
assign_result = self.assign(bboxes, gt_bboxes)
assert len(assign_result.gt_inds) == 0
def test_point_assigner():
self = PointAssigner()
points = torch.FloatTensor([ # [x, y, stride]
[0, 0, 1],
[10, 10, 1],
[5, 5, 1],
[32, 32, 1],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
assign_result = self.assign(points, gt_bboxes)
expected_gt_inds = torch.LongTensor([1, 2, 1, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_point_assigner_with_empty_gt():
"""Test corner case where an image might have no true detections."""
self = PointAssigner()
points = torch.FloatTensor([ # [x, y, stride]
[0, 0, 1],
[10, 10, 1],
[5, 5, 1],
[32, 32, 1],
])
gt_bboxes = torch.FloatTensor([])
assign_result = self.assign(points, gt_bboxes)
expected_gt_inds = torch.LongTensor([0, 0, 0, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_point_assigner_with_empty_boxes_and_gt():
"""Test corner case where an image might predict no points and no gt."""
self = PointAssigner()
points = torch.FloatTensor([])
gt_bboxes = torch.FloatTensor([])
assign_result = self.assign(points, gt_bboxes)
assert len(assign_result.gt_inds) == 0
def test_approx_iou_assigner():
self = ApproxMaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
approxs_per_octave = 1
approxs = bboxes
squares = bboxes
assign_result = self.assign(approxs, squares, approxs_per_octave,
gt_bboxes)
expected_gt_inds = torch.LongTensor([1, 0, 2, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_approx_iou_assigner_with_empty_gt():
"""Test corner case where an image might have no true detections."""
self = ApproxMaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.FloatTensor([])
approxs_per_octave = 1
approxs = bboxes
squares = bboxes
assign_result = self.assign(approxs, squares, approxs_per_octave,
gt_bboxes)
expected_gt_inds = torch.LongTensor([0, 0, 0, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_approx_iou_assigner_with_empty_boxes():
"""Test corner case where an network might predict no boxes."""
self = ApproxMaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.empty((0, 4))
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
approxs_per_octave = 1
approxs = bboxes
squares = bboxes
assign_result = self.assign(approxs, squares, approxs_per_octave,
gt_bboxes)
assert len(assign_result.gt_inds) == 0
def test_approx_iou_assigner_with_empty_boxes_and_gt():
"""Test corner case where an network might predict no boxes and no gt."""
self = ApproxMaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
)
bboxes = torch.empty((0, 4))
gt_bboxes = torch.empty((0, 4))
approxs_per_octave = 1
approxs = bboxes
squares = bboxes
assign_result = self.assign(approxs, squares, approxs_per_octave,
gt_bboxes)
assert len(assign_result.gt_inds) == 0
def test_random_assign_result():
"""Test random instantiation of assign result to catch corner cases."""
from mmdet.core.bbox.assigners.assign_result import AssignResult
AssignResult.random()
AssignResult.random(num_gts=0, num_preds=0)
AssignResult.random(num_gts=0, num_preds=3)
AssignResult.random(num_gts=3, num_preds=3)
AssignResult.random(num_gts=0, num_preds=3)
AssignResult.random(num_gts=7, num_preds=7)
AssignResult.random(num_gts=7, num_preds=64)
AssignResult.random(num_gts=24, num_preds=3)
def test_center_region_assigner():
self = CenterRegionAssigner(pos_scale=0.3, neg_scale=1)
bboxes = torch.FloatTensor([[0, 0, 10, 10], [10, 10, 20, 20], [8, 8, 9,
9]])
gt_bboxes = torch.FloatTensor([
[0, 0, 11, 11], # match bboxes[0]
[10, 10, 20, 20], # match bboxes[1]
[4.5, 4.5, 5.5, 5.5], # match bboxes[0] but area is too small
[0, 0, 10, 10], # match bboxes[1] and has a smaller area than gt[0]
])
gt_labels = torch.LongTensor([2, 3, 4, 5])
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
assert len(assign_result.gt_inds) == 3
assert len(assign_result.labels) == 3
expected_gt_inds = torch.LongTensor([4, 2, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
shadowed_labels = assign_result.get_extra_property('shadowed_labels')
# [8, 8, 9, 9] in the shadowed region of [0, 0, 11, 11] (label: 2)
assert torch.any(shadowed_labels == torch.LongTensor([[2, 2]]))
# [8, 8, 9, 9] in the shadowed region of [0, 0, 10, 10] (label: 5)
assert torch.any(shadowed_labels == torch.LongTensor([[2, 5]]))
# [0, 0, 10, 10] is already assigned to [4.5, 4.5, 5.5, 5.5].
# Therefore, [0, 0, 11, 11] (label: 2) is shadowed
assert torch.any(shadowed_labels == torch.LongTensor([[0, 2]]))
def test_center_region_assigner_with_ignore():
self = CenterRegionAssigner(
pos_scale=0.5,
neg_scale=1,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 10], # match bboxes[0]
[10, 10, 20, 20], # match bboxes[1]
])
gt_bboxes_ignore = torch.FloatTensor([
[0, 0, 10, 10], # match bboxes[0]
])
gt_labels = torch.LongTensor([1, 2])
assign_result = self.assign(
bboxes,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=gt_labels)
assert len(assign_result.gt_inds) == 2
assert len(assign_result.labels) == 2
expected_gt_inds = torch.LongTensor([-1, 2])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_center_region_assigner_with_empty_bboxes():
self = CenterRegionAssigner(
pos_scale=0.5,
neg_scale=1,
)
bboxes = torch.empty((0, 4)).float()
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 10], # match bboxes[0]
[10, 10, 20, 20], # match bboxes[1]
])
gt_labels = torch.LongTensor([1, 2])
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
assert assign_result.gt_inds is None or assign_result.gt_inds.numel() == 0
assert assign_result.labels is None or assign_result.labels.numel() == 0
def test_center_region_assigner_with_empty_gts():
self = CenterRegionAssigner(
pos_scale=0.5,
neg_scale=1,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
])
gt_bboxes = torch.empty((0, 4)).float()
gt_labels = torch.empty((0, )).long()
assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
assert len(assign_result.gt_inds) == 2
expected_gt_inds = torch.LongTensor([0, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_hungarian_match_assigner():
self = HungarianAssigner()
assert self.iou_cost.iou_mode == 'giou'
# test no gt bboxes
bbox_pred = torch.rand((10, 4))
cls_pred = torch.rand((10, 81))
gt_bboxes = torch.empty((0, 4)).float()
gt_labels = torch.empty((0, )).long()
img_meta = dict(img_shape=(10, 8, 3))
assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels,
img_meta)
assert torch.all(assign_result.gt_inds == 0)
assert torch.all(assign_result.labels == -1)
# test with gt bboxes
gt_bboxes = torch.FloatTensor([[0, 0, 5, 7], [3, 5, 7, 8]])
gt_labels = torch.LongTensor([1, 20])
assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0)
assert (assign_result.labels > -1).sum() == gt_bboxes.size(0)
# test iou mode
self = HungarianAssigner(
iou_cost=dict(type='IoUCost', iou_mode='iou', weight=1.0))
assert self.iou_cost.iou_mode == 'iou'
assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0)
assert (assign_result.labels > -1).sum() == gt_bboxes.size(0)
# test focal loss mode
self = HungarianAssigner(
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=1.0),
cls_cost=dict(type='FocalLossCost', weight=1.))
assert self.iou_cost.iou_mode == 'giou'
assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0)
assert (assign_result.labels > -1).sum() == gt_bboxes.size(0)
def test_uniform_assigner():
self = UniformAssigner(0.15, 0.7, 1)
pred_bbox = torch.FloatTensor([
[1, 1, 12, 8],
[4, 4, 20, 20],
[1, 5, 15, 15],
[30, 5, 32, 42],
])
anchor = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_labels = torch.LongTensor([2, 3])
assign_result = self.assign(
pred_bbox, anchor, gt_bboxes, gt_labels=gt_labels)
assert len(assign_result.gt_inds) == 4
assert len(assign_result.labels) == 4
expected_gt_inds = torch.LongTensor([-1, 0, 2, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_uniform_assigner_with_empty_gt():
"""Test corner case where an image might have no true detections."""
self = UniformAssigner(0.15, 0.7, 1)
pred_bbox = torch.FloatTensor([
[1, 1, 12, 8],
[4, 4, 20, 20],
[1, 5, 15, 15],
[30, 5, 32, 42],
])
anchor = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.empty(0, 4)
assign_result = self.assign(pred_bbox, anchor, gt_bboxes)
expected_gt_inds = torch.LongTensor([0, 0, 0, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_uniform_assigner_with_empty_boxes():
"""Test corner case where a network might predict no boxes."""
self = UniformAssigner(0.15, 0.7, 1)
pred_bbox = torch.empty((0, 4))
anchor = torch.empty((0, 4))
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_labels = torch.LongTensor([2, 3])
# Test with gt_labels
assign_result = self.assign(
pred_bbox, anchor, gt_bboxes, gt_labels=gt_labels)
assert len(assign_result.gt_inds) == 0
assert tuple(assign_result.labels.shape) == (0, )
# Test without gt_labels
assign_result = self.assign(pred_bbox, anchor, gt_bboxes, gt_labels=None)
assert len(assign_result.gt_inds) == 0
def test_sim_ota_assigner():
self = SimOTAAssigner(
center_radius=2.5, candidate_topk=1, iou_weight=3.0, cls_weight=1.0)
pred_scores = torch.FloatTensor([[0.2], [0.8]])
priors = torch.Tensor([[0, 12, 23, 34], [4, 5, 6, 7]])
decoded_bboxes = torch.Tensor([[[30, 40, 50, 60]], [[4, 5, 6, 7]]])
gt_bboxes = torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]])
gt_labels = torch.LongTensor([2])
assign_result = self.assign(pred_scores, priors, decoded_bboxes, gt_bboxes,
gt_labels)
expected_gt_inds = torch.LongTensor([0, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_task_aligned_assigner():
with pytest.raises(AssertionError):
TaskAlignedAssigner(topk=0)
self = TaskAlignedAssigner(topk=13)
pred_score = torch.FloatTensor([[0.1, 0.2], [0.2, 0.3], [0.3, 0.4],
[0.4, 0.5]])
pred_bbox = torch.FloatTensor([
[1, 1, 12, 8],
[4, 4, 20, 20],
[1, 5, 15, 15],
[30, 5, 32, 42],
])
anchor = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_labels = torch.LongTensor([0, 1])
assign_result = self.assign(
pred_score,
pred_bbox,
anchor,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels)
assert len(assign_result.gt_inds) == 4
assert len(assign_result.labels) == 4
# test empty gt
gt_bboxes = torch.empty(0, 4)
gt_labels = torch.empty(0, 2)
assign_result = self.assign(
pred_score, pred_bbox, anchor, gt_bboxes=gt_bboxes)
expected_gt_inds = torch.LongTensor([0, 0, 0, 0])
assert torch.all(assign_result.gt_inds == expected_gt_inds)
def test_mask_hungarian_match_assigner():
# test no gt masks
assigner_cfg = dict(
cls_cost=dict(type='ClassificationCost', weight=1.0),
mask_cost=dict(type='FocalLossCost', weight=20.0, binary_input=True),
dice_cost=dict(type='DiceCost', weight=1.0, pred_act=True, eps=1.0))
self = MaskHungarianAssigner(**assigner_cfg)
cls_pred = torch.rand((10, 133))
mask_pred = torch.rand((10, 50, 50))
gt_labels = torch.empty((0, )).long()
gt_masks = torch.empty((0, 50, 50)).float()
img_meta = None
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks,
img_meta)
assert torch.all(assign_result.gt_inds == 0)
assert torch.all(assign_result.labels == -1)
# test with gt masks of naive_dice is True
gt_labels = torch.LongTensor([10, 100])
gt_masks = torch.zeros((2, 50, 50)).long()
gt_masks[0, :25] = 1
gt_masks[0, 25:] = 1
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0)
assert (assign_result.labels > -1).sum() == gt_labels.size(0)
# test with cls mode
assigner_cfg = dict(
cls_cost=dict(type='ClassificationCost', weight=1.0),
mask_cost=dict(type='FocalLossCost', weight=0.0, binary_input=True),
dice_cost=dict(type='DiceCost', weight=0.0, pred_act=True, eps=1.0))
self = MaskHungarianAssigner(**assigner_cfg)
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0)
assert (assign_result.labels > -1).sum() == gt_labels.size(0)
# test with mask focal mode
assigner_cfg = dict(
cls_cost=dict(type='ClassificationCost', weight=0.0),
mask_cost=dict(type='FocalLossCost', weight=1.0, binary_input=True),
dice_cost=dict(type='DiceCost', weight=0.0, pred_act=True, eps=1.0))
self = MaskHungarianAssigner(**assigner_cfg)
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0)
assert (assign_result.labels > -1).sum() == gt_labels.size(0)
# test with mask dice mode
assigner_cfg = dict(
cls_cost=dict(type='ClassificationCost', weight=0.0),
mask_cost=dict(type='FocalLossCost', weight=0.0, binary_input=True),
dice_cost=dict(type='DiceCost', weight=1.0, pred_act=True, eps=1.0))
self = MaskHungarianAssigner(**assigner_cfg)
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0)
assert (assign_result.labels > -1).sum() == gt_labels.size(0)
# test with mask dice mode that naive_dice is False
assigner_cfg = dict(
cls_cost=dict(type='ClassificationCost', weight=0.0),
mask_cost=dict(type='FocalLossCost', weight=0.0, binary_input=True),
dice_cost=dict(
type='DiceCost',
weight=1.0,
pred_act=True,
eps=1.0,
naive_dice=False))
self = MaskHungarianAssigner(**assigner_cfg)
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0)
assert (assign_result.labels > -1).sum() == gt_labels.size(0)
# test with mask bce mode
assigner_cfg = dict(
cls_cost=dict(type='ClassificationCost', weight=0.0),
mask_cost=dict(
type='CrossEntropyLossCost', weight=1.0, use_sigmoid=True),
dice_cost=dict(type='DiceCost', weight=0.0, pred_act=True, eps=1.0))
self = MaskHungarianAssigner(**assigner_cfg)
assign_result = self.assign(cls_pred, mask_pred, gt_labels, gt_masks,
img_meta)
assert torch.all(assign_result.gt_inds > -1)
assert (assign_result.gt_inds > 0).sum() == gt_labels.size(0)
assert (assign_result.labels > -1).sum() == gt_labels.size(0)
# test with ce mode of CrossEntropyLossCost which is not supported yet
assigner_cfg = dict(
cls_cost=dict(type='ClassificationCost', weight=0.0),
mask_cost=dict(
type='CrossEntropyLossCost', weight=1.0, use_sigmoid=False),
dice_cost=dict(type='DiceCost', weight=0.0, pred_act=True, eps=1.0))
with pytest.raises(AssertionError):
self = MaskHungarianAssigner(**assigner_cfg)