camenduru's picture
thanks to show ❤
3bbb319
raw
history blame
21 kB
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules.batchnorm import _BatchNorm
from mmdet.models.necks import (FPG, FPN, FPN_CARAFE, NASFCOS_FPN, NASFPN,
YOLOXPAFPN, ChannelMapper, CTResNetNeck,
DilatedEncoder, DyHead, SSDNeck, YOLOV3Neck)
def test_fpn():
"""Tests fpn."""
s = 64
in_channels = [8, 16, 32, 64]
feat_sizes = [s // 2**i for i in range(4)] # [64, 32, 16, 8]
out_channels = 8
# end_level=-1 is equal to end_level=3
FPN(in_channels=in_channels,
out_channels=out_channels,
start_level=0,
end_level=-1,
num_outs=5)
FPN(in_channels=in_channels,
out_channels=out_channels,
start_level=0,
end_level=3,
num_outs=5)
# `num_outs` is not equal to end_level - start_level + 1
with pytest.raises(AssertionError):
FPN(in_channels=in_channels,
out_channels=out_channels,
start_level=1,
end_level=2,
num_outs=3)
# `num_outs` is not equal to len(in_channels) - start_level
with pytest.raises(AssertionError):
FPN(in_channels=in_channels,
out_channels=out_channels,
start_level=1,
num_outs=2)
# `end_level` is larger than len(in_channels) - 1
with pytest.raises(AssertionError):
FPN(in_channels=in_channels,
out_channels=out_channels,
start_level=1,
end_level=4,
num_outs=2)
# `num_outs` is not equal to end_level - start_level
with pytest.raises(AssertionError):
FPN(in_channels=in_channels,
out_channels=out_channels,
start_level=1,
end_level=3,
num_outs=1)
# Invalid `add_extra_convs` option
with pytest.raises(AssertionError):
FPN(in_channels=in_channels,
out_channels=out_channels,
start_level=1,
add_extra_convs='on_xxx',
num_outs=5)
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
start_level=1,
add_extra_convs=True,
num_outs=5)
# FPN expects a multiple levels of features per image
feats = [
torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
for i in range(len(in_channels))
]
outs = fpn_model(feats)
assert fpn_model.add_extra_convs == 'on_input'
assert len(outs) == fpn_model.num_outs
for i in range(fpn_model.num_outs):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
# Tests for fpn with no extra convs (pooling is used instead)
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
start_level=1,
add_extra_convs=False,
num_outs=5)
outs = fpn_model(feats)
assert len(outs) == fpn_model.num_outs
assert not fpn_model.add_extra_convs
for i in range(fpn_model.num_outs):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
# Tests for fpn with lateral bns
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
start_level=1,
add_extra_convs=True,
no_norm_on_lateral=False,
norm_cfg=dict(type='BN', requires_grad=True),
num_outs=5)
outs = fpn_model(feats)
assert len(outs) == fpn_model.num_outs
assert fpn_model.add_extra_convs == 'on_input'
for i in range(fpn_model.num_outs):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
bn_exist = False
for m in fpn_model.modules():
if isinstance(m, _BatchNorm):
bn_exist = True
assert bn_exist
# Bilinear upsample
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
start_level=1,
add_extra_convs=True,
upsample_cfg=dict(mode='bilinear', align_corners=True),
num_outs=5)
fpn_model(feats)
outs = fpn_model(feats)
assert len(outs) == fpn_model.num_outs
assert fpn_model.add_extra_convs == 'on_input'
for i in range(fpn_model.num_outs):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
# Scale factor instead of fixed upsample size upsample
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
start_level=1,
add_extra_convs=True,
upsample_cfg=dict(scale_factor=2),
num_outs=5)
outs = fpn_model(feats)
assert len(outs) == fpn_model.num_outs
for i in range(fpn_model.num_outs):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
# Extra convs source is 'inputs'
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs='on_input',
start_level=1,
num_outs=5)
assert fpn_model.add_extra_convs == 'on_input'
outs = fpn_model(feats)
assert len(outs) == fpn_model.num_outs
for i in range(fpn_model.num_outs):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
# Extra convs source is 'laterals'
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs='on_lateral',
start_level=1,
num_outs=5)
assert fpn_model.add_extra_convs == 'on_lateral'
outs = fpn_model(feats)
assert len(outs) == fpn_model.num_outs
for i in range(fpn_model.num_outs):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
# Extra convs source is 'outputs'
fpn_model = FPN(
in_channels=in_channels,
out_channels=out_channels,
add_extra_convs='on_output',
start_level=1,
num_outs=5)
assert fpn_model.add_extra_convs == 'on_output'
outs = fpn_model(feats)
assert len(outs) == fpn_model.num_outs
for i in range(fpn_model.num_outs):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
def test_channel_mapper():
"""Tests ChannelMapper."""
s = 64
in_channels = [8, 16, 32, 64]
feat_sizes = [s // 2**i for i in range(4)] # [64, 32, 16, 8]
out_channels = 8
kernel_size = 3
feats = [
torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
for i in range(len(in_channels))
]
# in_channels must be a list
with pytest.raises(AssertionError):
channel_mapper = ChannelMapper(
in_channels=10, out_channels=out_channels, kernel_size=kernel_size)
# the length of channel_mapper's inputs must be equal to the length of
# in_channels
with pytest.raises(AssertionError):
channel_mapper = ChannelMapper(
in_channels=in_channels[:-1],
out_channels=out_channels,
kernel_size=kernel_size)
channel_mapper(feats)
channel_mapper = ChannelMapper(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size)
outs = channel_mapper(feats)
assert len(outs) == len(feats)
for i in range(len(feats)):
outs[i].shape[1] == out_channels
outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
def test_dilated_encoder():
in_channels = 16
out_channels = 32
out_shape = 34
dilated_encoder = DilatedEncoder(in_channels, out_channels, 16, 2,
[2, 4, 6, 8])
feat = [torch.rand(1, in_channels, 34, 34)]
out_feat = dilated_encoder(feat)[0]
assert out_feat.shape == (1, out_channels, out_shape, out_shape)
def test_ct_resnet_neck():
# num_filters/num_kernels must be a list
with pytest.raises(TypeError):
CTResNetNeck(
in_channel=10, num_deconv_filters=10, num_deconv_kernels=4)
# num_filters/num_kernels must be same length
with pytest.raises(AssertionError):
CTResNetNeck(
in_channel=10,
num_deconv_filters=(10, 10),
num_deconv_kernels=(4, ))
in_channels = 16
num_filters = (8, 8)
num_kernels = (4, 4)
feat = torch.rand(1, 16, 4, 4)
ct_resnet_neck = CTResNetNeck(
in_channel=in_channels,
num_deconv_filters=num_filters,
num_deconv_kernels=num_kernels,
use_dcn=False)
# feat must be list or tuple
with pytest.raises(AssertionError):
ct_resnet_neck(feat)
out_feat = ct_resnet_neck([feat])[0]
assert out_feat.shape == (1, num_filters[-1], 16, 16)
if torch.cuda.is_available():
# test dcn
ct_resnet_neck = CTResNetNeck(
in_channel=in_channels,
num_deconv_filters=num_filters,
num_deconv_kernels=num_kernels)
ct_resnet_neck = ct_resnet_neck.cuda()
feat = feat.cuda()
out_feat = ct_resnet_neck([feat])[0]
assert out_feat.shape == (1, num_filters[-1], 16, 16)
def test_yolov3_neck():
# num_scales, in_channels, out_channels must be same length
with pytest.raises(AssertionError):
YOLOV3Neck(num_scales=3, in_channels=[16, 8, 4], out_channels=[8, 4])
# len(feats) must equal to num_scales
with pytest.raises(AssertionError):
neck = YOLOV3Neck(
num_scales=3, in_channels=[16, 8, 4], out_channels=[8, 4, 2])
feats = (torch.rand(1, 4, 16, 16), torch.rand(1, 8, 16, 16))
neck(feats)
# test normal channels
s = 32
in_channels = [16, 8, 4]
out_channels = [8, 4, 2]
feat_sizes = [s // 2**i for i in range(len(in_channels) - 1, -1, -1)]
feats = [
torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
for i in range(len(in_channels) - 1, -1, -1)
]
neck = YOLOV3Neck(
num_scales=3, in_channels=in_channels, out_channels=out_channels)
outs = neck(feats)
assert len(outs) == len(feats)
for i in range(len(outs)):
assert outs[i].shape == \
(1, out_channels[i], feat_sizes[i], feat_sizes[i])
# test more flexible setting
s = 32
in_channels = [32, 8, 16]
out_channels = [19, 21, 5]
feat_sizes = [s // 2**i for i in range(len(in_channels) - 1, -1, -1)]
feats = [
torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
for i in range(len(in_channels) - 1, -1, -1)
]
neck = YOLOV3Neck(
num_scales=3, in_channels=in_channels, out_channels=out_channels)
outs = neck(feats)
assert len(outs) == len(feats)
for i in range(len(outs)):
assert outs[i].shape == \
(1, out_channels[i], feat_sizes[i], feat_sizes[i])
def test_ssd_neck():
# level_strides/level_paddings must be same length
with pytest.raises(AssertionError):
SSDNeck(
in_channels=[8, 16],
out_channels=[8, 16, 32],
level_strides=[2],
level_paddings=[2, 1])
# length of out_channels must larger than in_channels
with pytest.raises(AssertionError):
SSDNeck(
in_channels=[8, 16],
out_channels=[8],
level_strides=[2],
level_paddings=[2])
# len(out_channels) - len(in_channels) must equal to len(level_strides)
with pytest.raises(AssertionError):
SSDNeck(
in_channels=[8, 16],
out_channels=[4, 16, 64],
level_strides=[2, 2],
level_paddings=[2, 2])
# in_channels must be same with out_channels[:len(in_channels)]
with pytest.raises(AssertionError):
SSDNeck(
in_channels=[8, 16],
out_channels=[4, 16, 64],
level_strides=[2],
level_paddings=[2])
ssd_neck = SSDNeck(
in_channels=[4],
out_channels=[4, 8, 16],
level_strides=[2, 1],
level_paddings=[1, 0])
feats = (torch.rand(1, 4, 16, 16), )
outs = ssd_neck(feats)
assert outs[0].shape == (1, 4, 16, 16)
assert outs[1].shape == (1, 8, 8, 8)
assert outs[2].shape == (1, 16, 6, 6)
# test SSD-Lite Neck
ssd_neck = SSDNeck(
in_channels=[4, 8],
out_channels=[4, 8, 16],
level_strides=[1],
level_paddings=[1],
l2_norm_scale=None,
use_depthwise=True,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6'))
assert not hasattr(ssd_neck, 'l2_norm')
from mmcv.cnn.bricks import DepthwiseSeparableConvModule
assert isinstance(ssd_neck.extra_layers[0][-1],
DepthwiseSeparableConvModule)
feats = (torch.rand(1, 4, 8, 8), torch.rand(1, 8, 8, 8))
outs = ssd_neck(feats)
assert outs[0].shape == (1, 4, 8, 8)
assert outs[1].shape == (1, 8, 8, 8)
assert outs[2].shape == (1, 16, 8, 8)
def test_yolox_pafpn():
s = 64
in_channels = [8, 16, 32, 64]
feat_sizes = [s // 2**i for i in range(4)] # [64, 32, 16, 8]
out_channels = 24
feats = [
torch.rand(1, in_channels[i], feat_sizes[i], feat_sizes[i])
for i in range(len(in_channels))
]
neck = YOLOXPAFPN(in_channels=in_channels, out_channels=out_channels)
outs = neck(feats)
assert len(outs) == len(feats)
for i in range(len(feats)):
assert outs[i].shape[1] == out_channels
assert outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
# test depth-wise
neck = YOLOXPAFPN(
in_channels=in_channels, out_channels=out_channels, use_depthwise=True)
from mmcv.cnn.bricks import DepthwiseSeparableConvModule
assert isinstance(neck.downsamples[0], DepthwiseSeparableConvModule)
outs = neck(feats)
assert len(outs) == len(feats)
for i in range(len(feats)):
assert outs[i].shape[1] == out_channels
assert outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
def test_dyhead():
s = 64
in_channels = 8
out_channels = 16
feat_sizes = [s // 2**i for i in range(4)] # [64, 32, 16, 8]
feats = [
torch.rand(1, in_channels, feat_sizes[i], feat_sizes[i])
for i in range(len(feat_sizes))
]
neck = DyHead(
in_channels=in_channels, out_channels=out_channels, num_blocks=3)
outs = neck(feats)
assert len(outs) == len(feats)
for i in range(len(outs)):
assert outs[i].shape[1] == out_channels
assert outs[i].shape[2] == outs[i].shape[3] == s // (2**i)
feat = torch.rand(1, 8, 4, 4)
# input feat must be tuple or list
with pytest.raises(AssertionError):
neck(feat)
def test_fpg():
# end_level=-1 is equal to end_level=3
norm_cfg = dict(type='BN', requires_grad=True)
FPG(in_channels=[8, 16, 32, 64],
out_channels=8,
inter_channels=8,
num_outs=5,
add_extra_convs=True,
start_level=1,
end_level=-1,
stack_times=9,
paths=['bu'] * 9,
same_down_trans=None,
same_up_trans=dict(
type='conv',
kernel_size=3,
stride=2,
padding=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
across_lateral_trans=dict(
type='conv',
kernel_size=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
across_down_trans=dict(
type='interpolation_conv',
mode='nearest',
kernel_size=3,
norm_cfg=norm_cfg,
order=('act', 'conv', 'norm'),
inplace=False),
across_up_trans=None,
across_skip_trans=dict(
type='conv',
kernel_size=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
output_trans=dict(
type='last_conv',
kernel_size=3,
order=('act', 'conv', 'norm'),
inplace=False),
norm_cfg=norm_cfg,
skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()])
FPG(in_channels=[8, 16, 32, 64],
out_channels=8,
inter_channels=8,
num_outs=5,
add_extra_convs=True,
start_level=1,
end_level=3,
stack_times=9,
paths=['bu'] * 9,
same_down_trans=None,
same_up_trans=dict(
type='conv',
kernel_size=3,
stride=2,
padding=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
across_lateral_trans=dict(
type='conv',
kernel_size=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
across_down_trans=dict(
type='interpolation_conv',
mode='nearest',
kernel_size=3,
norm_cfg=norm_cfg,
order=('act', 'conv', 'norm'),
inplace=False),
across_up_trans=None,
across_skip_trans=dict(
type='conv',
kernel_size=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
output_trans=dict(
type='last_conv',
kernel_size=3,
order=('act', 'conv', 'norm'),
inplace=False),
norm_cfg=norm_cfg,
skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()])
# `end_level` is larger than len(in_channels) - 1
with pytest.raises(AssertionError):
FPG(in_channels=[8, 16, 32, 64],
out_channels=8,
stack_times=9,
paths=['bu'] * 9,
start_level=1,
end_level=4,
num_outs=2,
skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()])
# `num_outs` is not equal to end_level - start_level + 1
with pytest.raises(AssertionError):
FPG(in_channels=[8, 16, 32, 64],
out_channels=8,
stack_times=9,
paths=['bu'] * 9,
start_level=1,
end_level=2,
num_outs=3,
skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()])
def test_fpn_carafe():
# end_level=-1 is equal to end_level=3
FPN_CARAFE(
in_channels=[8, 16, 32, 64],
out_channels=8,
start_level=0,
end_level=3,
num_outs=4)
FPN_CARAFE(
in_channels=[8, 16, 32, 64],
out_channels=8,
start_level=0,
end_level=-1,
num_outs=4)
# `end_level` is larger than len(in_channels) - 1
with pytest.raises(AssertionError):
FPN_CARAFE(
in_channels=[8, 16, 32, 64],
out_channels=8,
start_level=1,
end_level=4,
num_outs=2)
# `num_outs` is not equal to end_level - start_level + 1
with pytest.raises(AssertionError):
FPN_CARAFE(
in_channels=[8, 16, 32, 64],
out_channels=8,
start_level=1,
end_level=2,
num_outs=3)
def test_nas_fpn():
# end_level=-1 is equal to end_level=3
NASFPN(
in_channels=[8, 16, 32, 64],
out_channels=8,
stack_times=9,
start_level=0,
end_level=3,
num_outs=4)
NASFPN(
in_channels=[8, 16, 32, 64],
out_channels=8,
stack_times=9,
start_level=0,
end_level=-1,
num_outs=4)
# `end_level` is larger than len(in_channels) - 1
with pytest.raises(AssertionError):
NASFPN(
in_channels=[8, 16, 32, 64],
out_channels=8,
stack_times=9,
start_level=1,
end_level=4,
num_outs=2)
# `num_outs` is not equal to end_level - start_level + 1
with pytest.raises(AssertionError):
NASFPN(
in_channels=[8, 16, 32, 64],
out_channels=8,
stack_times=9,
start_level=1,
end_level=2,
num_outs=3)
def test_nasfcos_fpn():
# end_level=-1 is equal to end_level=3
NASFCOS_FPN(
in_channels=[8, 16, 32, 64],
out_channels=8,
start_level=0,
end_level=3,
num_outs=4)
NASFCOS_FPN(
in_channels=[8, 16, 32, 64],
out_channels=8,
start_level=0,
end_level=-1,
num_outs=4)
# `end_level` is larger than len(in_channels) - 1
with pytest.raises(AssertionError):
NASFCOS_FPN(
in_channels=[8, 16, 32, 64],
out_channels=8,
start_level=1,
end_level=4,
num_outs=2)
# `num_outs` is not equal to end_level - start_level + 1
with pytest.raises(AssertionError):
NASFCOS_FPN(
in_channels=[8, 16, 32, 64],
out_channels=8,
start_level=1,
end_level=2,
num_outs=3)