syntax = "proto2"; | |
package caffe; | |
// Specifies the shape (dimensions) of a Blob. | |
message BlobShape { | |
repeated int64 dim = 1 [packed = true]; | |
} | |
message BlobProto { | |
optional BlobShape shape = 7; | |
repeated float data = 5 [packed = true]; | |
repeated float diff = 6 [packed = true]; | |
repeated double double_data = 8 [packed = true]; | |
repeated double double_diff = 9 [packed = true]; | |
// 4D dimensions -- deprecated. Use "shape" instead. | |
optional int32 num = 1 [default = 0]; | |
optional int32 channels = 2 [default = 0]; | |
optional int32 height = 3 [default = 0]; | |
optional int32 width = 4 [default = 0]; | |
} | |
// The BlobProtoVector is simply a way to pass multiple blobproto instances | |
// around. | |
message BlobProtoVector { | |
repeated BlobProto blobs = 1; | |
} | |
message Datum { | |
optional int32 channels = 1; | |
optional int32 height = 2; | |
optional int32 width = 3; | |
// the actual image data, in bytes | |
optional bytes data = 4; | |
optional int32 label = 5; | |
// Optionally, the datum could also hold float data. | |
repeated float float_data = 6; | |
// If true data contains an encoded image that need to be decoded | |
optional bool encoded = 7 [default = false]; | |
} | |
message FillerParameter { | |
// The filler type. | |
optional string type = 1 [default = 'constant']; | |
optional float value = 2 [default = 0]; // the value in constant filler | |
optional float min = 3 [default = 0]; // the min value in uniform filler | |
optional float max = 4 [default = 1]; // the max value in uniform filler | |
optional float mean = 5 [default = 0]; // the mean value in Gaussian filler | |
optional float std = 6 [default = 1]; // the std value in Gaussian filler | |
// The expected number of non-zero output weights for a given input in | |
// Gaussian filler -- the default -1 means don't perform sparsification. | |
optional int32 sparse = 7 [default = -1]; | |
// Normalize the filler variance by fan_in, fan_out, or their average. | |
// Applies to 'xavier' and 'msra' fillers. | |
enum VarianceNorm { | |
FAN_IN = 0; | |
FAN_OUT = 1; | |
AVERAGE = 2; | |
} | |
optional VarianceNorm variance_norm = 8 [default = FAN_IN]; | |
} | |
message NetParameter { | |
optional string name = 1; // consider giving the network a name | |
// DEPRECATED. See InputParameter. The input blobs to the network. | |
repeated string input = 3; | |
// DEPRECATED. See InputParameter. The shape of the input blobs. | |
repeated BlobShape input_shape = 8; | |
// 4D input dimensions -- deprecated. Use "input_shape" instead. | |
// If specified, for each input blob there should be four | |
// values specifying the num, channels, height and width of the input blob. | |
// Thus, there should be a total of (4 * #input) numbers. | |
repeated int32 input_dim = 4; | |
// Whether the network will force every layer to carry out backward operation. | |
// If set False, then whether to carry out backward is determined | |
// automatically according to the net structure and learning rates. | |
optional bool force_backward = 5 [default = false]; | |
// The current "state" of the network, including the phase, level, and stage. | |
// Some layers may be included/excluded depending on this state and the states | |
// specified in the layers' include and exclude fields. | |
optional NetState state = 6; | |
// Print debugging information about results while running Net::Forward, | |
// Net::Backward, and Net::Update. | |
optional bool debug_info = 7 [default = false]; | |
// The layers that make up the net. Each of their configurations, including | |
// connectivity and behavior, is specified as a LayerParameter. | |
repeated LayerParameter layer = 100; // ID 100 so layers are printed last. | |
// DEPRECATED: use 'layer' instead. | |
repeated V1LayerParameter layers = 2; | |
} | |
// NOTE | |
// Update the next available ID when you add a new SolverParameter field. | |
// | |
// SolverParameter next available ID: 41 (last added: type) | |
message SolverParameter { | |
////////////////////////////////////////////////////////////////////////////// | |
// Specifying the train and test networks | |
// | |
// Exactly one train net must be specified using one of the following fields: | |
// train_net_param, train_net, net_param, net | |
// One or more test nets may be specified using any of the following fields: | |
// test_net_param, test_net, net_param, net | |
// If more than one test net field is specified (e.g., both net and | |
// test_net are specified), they will be evaluated in the field order given | |
// above: (1) test_net_param, (2) test_net, (3) net_param/net. | |
// A test_iter must be specified for each test_net. | |
// A test_level and/or a test_stage may also be specified for each test_net. | |
////////////////////////////////////////////////////////////////////////////// | |
// Proto filename for the train net, possibly combined with one or more | |
// test nets. | |
optional string net = 24; | |
// Inline train net param, possibly combined with one or more test nets. | |
optional NetParameter net_param = 25; | |
optional string train_net = 1; // Proto filename for the train net. | |
repeated string test_net = 2; // Proto filenames for the test nets. | |
optional NetParameter train_net_param = 21; // Inline train net params. | |
repeated NetParameter test_net_param = 22; // Inline test net params. | |
// The states for the train/test nets. Must be unspecified or | |
// specified once per net. | |
// | |
// By default, all states will have solver = true; | |
// train_state will have phase = TRAIN, | |
// and all test_state's will have phase = TEST. | |
// Other defaults are set according to the NetState defaults. | |
optional NetState train_state = 26; | |
repeated NetState test_state = 27; | |
// The number of iterations for each test net. | |
repeated int32 test_iter = 3; | |
// The number of iterations between two testing phases. | |
optional int32 test_interval = 4 [default = 0]; | |
optional bool test_compute_loss = 19 [default = false]; | |
// If true, run an initial test pass before the first iteration, | |
// ensuring memory availability and printing the starting value of the loss. | |
optional bool test_initialization = 32 [default = true]; | |
optional float base_lr = 5; // The base learning rate | |
// the number of iterations between displaying info. If display = 0, no info | |
// will be displayed. | |
optional int32 display = 6; | |
// Display the loss averaged over the last average_loss iterations | |
optional int32 average_loss = 33 [default = 1]; | |
optional int32 max_iter = 7; // the maximum number of iterations | |
// accumulate gradients over `iter_size` x `batch_size` instances | |
optional int32 iter_size = 36 [default = 1]; | |
// The learning rate decay policy. The currently implemented learning rate | |
// policies are as follows: | |
// - fixed: always return base_lr. | |
// - step: return base_lr * gamma ^ (floor(iter / step)) | |
// - exp: return base_lr * gamma ^ iter | |
// - inv: return base_lr * (1 + gamma * iter) ^ (- power) | |
// - multistep: similar to step but it allows non uniform steps defined by | |
// stepvalue | |
// - poly: the effective learning rate follows a polynomial decay, to be | |
// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power) | |
// - sigmoid: the effective learning rate follows a sigmod decay | |
// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize)))) | |
// | |
// where base_lr, max_iter, gamma, step, stepvalue and power are defined | |
// in the solver parameter protocol buffer, and iter is the current iteration. | |
optional string lr_policy = 8; | |
optional float gamma = 9; // The parameter to compute the learning rate. | |
optional float power = 10; // The parameter to compute the learning rate. | |
optional float momentum = 11; // The momentum value. | |
optional float weight_decay = 12; // The weight decay. | |
// regularization types supported: L1 and L2 | |
// controlled by weight_decay | |
optional string regularization_type = 29 [default = "L2"]; | |
// the stepsize for learning rate policy "step" | |
optional int32 stepsize = 13; | |
// the stepsize for learning rate policy "multistep" | |
repeated int32 stepvalue = 34; | |
// Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm, | |
// whenever their actual L2 norm is larger. | |
optional float clip_gradients = 35 [default = -1]; | |
optional int32 snapshot = 14 [default = 0]; // The snapshot interval | |
optional string snapshot_prefix = 15; // The prefix for the snapshot. | |
// whether to snapshot diff in the results or not. Snapshotting diff will help | |
// debugging but the final protocol buffer size will be much larger. | |
optional bool snapshot_diff = 16 [default = false]; | |
enum SnapshotFormat { | |
HDF5 = 0; | |
BINARYPROTO = 1; | |
} | |
optional SnapshotFormat snapshot_format = 37 [default = BINARYPROTO]; | |
// the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default. | |
enum SolverMode { | |
CPU = 0; | |
GPU = 1; | |
} | |
optional SolverMode solver_mode = 17 [default = GPU]; | |
// the device_id will that be used in GPU mode. Use device_id = 0 in default. | |
optional int32 device_id = 18 [default = 0]; | |
// If non-negative, the seed with which the Solver will initialize the Caffe | |
// random number generator -- useful for reproducible results. Otherwise, | |
// (and by default) initialize using a seed derived from the system clock. | |
optional int64 random_seed = 20 [default = -1]; | |
// type of the solver | |
optional string type = 40 [default = "SGD"]; | |
// numerical stability for RMSProp, AdaGrad and AdaDelta and Adam | |
optional float delta = 31 [default = 1e-8]; | |
// parameters for the Adam solver | |
optional float momentum2 = 39 [default = 0.999]; | |
// RMSProp decay value | |
// MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t) | |
optional float rms_decay = 38; | |
// If true, print information about the state of the net that may help with | |
// debugging learning problems. | |
optional bool debug_info = 23 [default = false]; | |
// If false, don't save a snapshot after training finishes. | |
optional bool snapshot_after_train = 28 [default = true]; | |
// DEPRECATED: old solver enum types, use string instead | |
enum SolverType { | |
SGD = 0; | |
NESTEROV = 1; | |
ADAGRAD = 2; | |
RMSPROP = 3; | |
ADADELTA = 4; | |
ADAM = 5; | |
} | |
// DEPRECATED: use type instead of solver_type | |
optional SolverType solver_type = 30 [default = SGD]; | |
} | |
// A message that stores the solver snapshots | |
message SolverState { | |
optional int32 iter = 1; // The current iteration | |
optional string learned_net = 2; // The file that stores the learned net. | |
repeated BlobProto history = 3; // The history for sgd solvers | |
optional int32 current_step = 4 [default = 0]; // The current step for learning rate | |
} | |
enum Phase { | |
TRAIN = 0; | |
TEST = 1; | |
} | |
message NetState { | |
optional Phase phase = 1 [default = TEST]; | |
optional int32 level = 2 [default = 0]; | |
repeated string stage = 3; | |
} | |
message NetStateRule { | |
// Set phase to require the NetState have a particular phase (TRAIN or TEST) | |
// to meet this rule. | |
optional Phase phase = 1; | |
// Set the minimum and/or maximum levels in which the layer should be used. | |
// Leave undefined to meet the rule regardless of level. | |
optional int32 min_level = 2; | |
optional int32 max_level = 3; | |
// Customizable sets of stages to include or exclude. | |
// The net must have ALL of the specified stages and NONE of the specified | |
// "not_stage"s to meet the rule. | |
// (Use multiple NetStateRules to specify conjunctions of stages.) | |
repeated string stage = 4; | |
repeated string not_stage = 5; | |
} | |
// Specifies training parameters (multipliers on global learning constants, | |
// and the name and other settings used for weight sharing). | |
message ParamSpec { | |
// The names of the parameter blobs -- useful for sharing parameters among | |
// layers, but never required otherwise. To share a parameter between two | |
// layers, give it a (non-empty) name. | |
optional string name = 1; | |
// Whether to require shared weights to have the same shape, or just the same | |
// count -- defaults to STRICT if unspecified. | |
optional DimCheckMode share_mode = 2; | |
enum DimCheckMode { | |
// STRICT (default) requires that num, channels, height, width each match. | |
STRICT = 0; | |
// PERMISSIVE requires only the count (num*channels*height*width) to match. | |
PERMISSIVE = 1; | |
} | |
// The multiplier on the global learning rate for this parameter. | |
optional float lr_mult = 3 [default = 1.0]; | |
// The multiplier on the global weight decay for this parameter. | |
optional float decay_mult = 4 [default = 1.0]; | |
} | |
// NOTE | |
// Update the next available ID when you add a new LayerParameter field. | |
// | |
// LayerParameter next available layer-specific ID: 146 (last added: shuffle_channel_param) | |
message LayerParameter { | |
optional string name = 1; // the layer name | |
optional string type = 2; // the layer type | |
repeated string bottom = 3; // the name of each bottom blob | |
repeated string top = 4; // the name of each top blob | |
// The train / test phase for computation. | |
optional Phase phase = 10; | |
// The amount of weight to assign each top blob in the objective. | |
// Each layer assigns a default value, usually of either 0 or 1, | |
// to each top blob. | |
repeated float loss_weight = 5; | |
// Specifies training parameters (multipliers on global learning constants, | |
// and the name and other settings used for weight sharing). | |
repeated ParamSpec param = 6; | |
// The blobs containing the numeric parameters of the layer. | |
repeated BlobProto blobs = 7; | |
// Specifies whether to backpropagate to each bottom. If unspecified, | |
// Caffe will automatically infer whether each input needs backpropagation | |
// to compute parameter gradients. If set to true for some inputs, | |
// backpropagation to those inputs is forced; if set false for some inputs, | |
// backpropagation to those inputs is skipped. | |
// | |
// The size must be either 0 or equal to the number of bottoms. | |
repeated bool propagate_down = 11; | |
// Rules controlling whether and when a layer is included in the network, | |
// based on the current NetState. You may specify a non-zero number of rules | |
// to include OR exclude, but not both. If no include or exclude rules are | |
// specified, the layer is always included. If the current NetState meets | |
// ANY (i.e., one or more) of the specified rules, the layer is | |
// included/excluded. | |
repeated NetStateRule include = 8; | |
repeated NetStateRule exclude = 9; | |
// Parameters for data pre-processing. | |
optional TransformationParameter transform_param = 100; | |
// Parameters shared by loss layers. | |
optional LossParameter loss_param = 101; | |
// Layer type-specific parameters. | |
// | |
// Note: certain layers may have more than one computational engine | |
// for their implementation. These layers include an Engine type and | |
// engine parameter for selecting the implementation. | |
// The default for the engine is set by the ENGINE switch at compile-time. | |
optional AccuracyParameter accuracy_param = 102; | |
optional ArgMaxParameter argmax_param = 103; | |
optional BatchNormParameter batch_norm_param = 139; | |
optional BiasParameter bias_param = 141; | |
optional BNParameter bn_param = 45; | |
optional ConcatParameter concat_param = 104; | |
optional ContrastiveLossParameter contrastive_loss_param = 105; | |
optional ConvolutionParameter convolution_param = 106; | |
optional CropParameter crop_param = 144; | |
optional DataParameter data_param = 107; | |
optional DetectionOutputParameter detection_output_param = 204; | |
optional YoloDetectionOutputParameter yolo_detection_output_param = 601; | |
optional Yolov3DetectionOutputParameter yolov3_detection_output_param = 603; | |
optional DropoutParameter dropout_param = 108; | |
optional DummyDataParameter dummy_data_param = 109; | |
optional EltwiseParameter eltwise_param = 110; | |
optional ELUParameter elu_param = 140; | |
optional EmbedParameter embed_param = 137; | |
optional ExpParameter exp_param = 111; | |
optional FlattenParameter flatten_param = 135; | |
optional HDF5DataParameter hdf5_data_param = 112; | |
optional HDF5OutputParameter hdf5_output_param = 113; | |
optional HingeLossParameter hinge_loss_param = 114; | |
optional ImageDataParameter image_data_param = 115; | |
optional InfogainLossParameter infogain_loss_param = 116; | |
optional InnerProductParameter inner_product_param = 117; | |
optional InputParameter input_param = 143; | |
optional InterpParameter interp_param = 205; | |
optional LogParameter log_param = 134; | |
optional LRNParameter lrn_param = 118; | |
optional MemoryDataParameter memory_data_param = 119; | |
optional MVNParameter mvn_param = 120; | |
optional NormalizeParameter norm_param = 206; | |
optional PoolingParameter pooling_param = 121; | |
optional PermuteParameter permute_param = 202; | |
optional PowerParameter power_param = 122; | |
optional PReLUParameter prelu_param = 131; | |
optional PriorBoxParameter prior_box_param = 203; | |
optional PSROIPoolingParameter psroi_pooling_param = 149; | |
optional PythonParameter python_param = 130; | |
optional RecurrentParameter recurrent_param = 146; | |
optional ReductionParameter reduction_param = 136; | |
optional ReLUParameter relu_param = 123; | |
optional ReorgParameter reorg_param = 147; | |
optional ReshapeParameter reshape_param = 133; | |
optional ROIAlignParameter roi_align_param = 148; | |
optional ROIPoolingParameter roi_pooling_param = 8266711; | |
optional ScaleParameter scale_param = 142; | |
optional ShuffleChannelParameter shuffle_channel_param = 145; | |
optional SigmoidParameter sigmoid_param = 124; | |
optional SmoothL1LossParameter smooth_l1_loss_param = 8266712; | |
optional SoftmaxParameter softmax_param = 125; | |
optional SPPParameter spp_param = 132; | |
optional SliceParameter slice_param = 126; | |
optional TanHParameter tanh_param = 127; | |
optional ThresholdParameter threshold_param = 128; | |
optional TileParameter tile_param = 138; | |
optional WindowDataParameter window_data_param = 129; | |
} | |
// Message that stores parameters used to apply transformation | |
// to the data layer's data | |
message TransformationParameter { | |
// For data pre-processing, we can do simple scaling and subtracting the | |
// data mean, if provided. Note that the mean subtraction is always carried | |
// out before scaling. | |
optional float scale = 1 [default = 1]; | |
// Specify if we want to randomly mirror data. | |
optional bool mirror = 2 [default = false]; | |
// Specify if we would like to randomly crop an image. | |
optional uint32 crop_size = 3 [default = 0]; | |
// mean_file and mean_value cannot be specified at the same time | |
optional string mean_file = 4; | |
// if specified can be repeated once (would substract it from all the channels) | |
// or can be repeated the same number of times as channels | |
// (would subtract them from the corresponding channel) | |
repeated float mean_value = 5; | |
// Force the decoded image to have 3 color channels. | |
optional bool force_color = 6 [default = false]; | |
// Force the decoded image to have 1 color channels. | |
optional bool force_gray = 7 [default = false]; | |
} | |
// Message that stores parameters used by data transformer for resize policy | |
message ResizeParameter { | |
//Probability of using this resize policy | |
optional float prob = 1 [default = 1]; | |
enum Resize_mode { | |
WARP = 1; | |
FIT_SMALL_SIZE = 2; | |
FIT_LARGE_SIZE_AND_PAD = 3; | |
} | |
optional Resize_mode resize_mode = 2 [default = WARP]; | |
optional uint32 height = 3 [default = 0]; | |
optional uint32 width = 4 [default = 0]; | |
// A parameter used to update bbox in FIT_SMALL_SIZE mode. | |
optional uint32 height_scale = 8 [default = 0]; | |
optional uint32 width_scale = 9 [default = 0]; | |
enum Pad_mode { | |
CONSTANT = 1; | |
MIRRORED = 2; | |
REPEAT_NEAREST = 3; | |
} | |
// Padding mode for BE_SMALL_SIZE_AND_PAD mode and object centering | |
optional Pad_mode pad_mode = 5 [default = CONSTANT]; | |
// if specified can be repeated once (would fill all the channels) | |
// or can be repeated the same number of times as channels | |
// (would use it them to the corresponding channel) | |
repeated float pad_value = 6; | |
enum Interp_mode { //Same as in OpenCV | |
LINEAR = 1; | |
AREA = 2; | |
NEAREST = 3; | |
CUBIC = 4; | |
LANCZOS4 = 5; | |
} | |
//interpolation for for resizing | |
repeated Interp_mode interp_mode = 7; | |
} | |
// Message that stores parameters shared by loss layers | |
message LossParameter { | |
// If specified, ignore instances with the given label. | |
optional int32 ignore_label = 1; | |
// How to normalize the loss for loss layers that aggregate across batches, | |
// spatial dimensions, or other dimensions. Currently only implemented in | |
// SoftmaxWithLoss layer. | |
enum NormalizationMode { | |
// Divide by the number of examples in the batch times spatial dimensions. | |
// Outputs that receive the ignore label will NOT be ignored in computing | |
// the normalization factor. | |
FULL = 0; | |
// Divide by the total number of output locations that do not take the | |
// ignore_label. If ignore_label is not set, this behaves like FULL. | |
VALID = 1; | |
// Divide by the batch size. | |
BATCH_SIZE = 2; | |
// Do not normalize the loss. | |
NONE = 3; | |
} | |
optional NormalizationMode normalization = 3 [default = VALID]; | |
// Deprecated. Ignored if normalization is specified. If normalization | |
// is not specified, then setting this to false will be equivalent to | |
// normalization = BATCH_SIZE to be consistent with previous behavior. | |
optional bool normalize = 2; | |
} | |
// Messages that store parameters used by individual layer types follow, in | |
// alphabetical order. | |
message AccuracyParameter { | |
// When computing accuracy, count as correct by comparing the true label to | |
// the top k scoring classes. By default, only compare to the top scoring | |
// class (i.e. argmax). | |
optional uint32 top_k = 1 [default = 1]; | |
// The "label" axis of the prediction blob, whose argmax corresponds to the | |
// predicted label -- may be negative to index from the end (e.g., -1 for the | |
// last axis). For example, if axis == 1 and the predictions are | |
// (N x C x H x W), the label blob is expected to contain N*H*W ground truth | |
// labels with integer values in {0, 1, ..., C-1}. | |
optional int32 axis = 2 [default = 1]; | |
// If specified, ignore instances with the given label. | |
optional int32 ignore_label = 3; | |
} | |
message ArgMaxParameter { | |
// If true produce pairs (argmax, maxval) | |
optional bool out_max_val = 1 [default = false]; | |
optional uint32 top_k = 2 [default = 1]; | |
// The axis along which to maximise -- may be negative to index from the | |
// end (e.g., -1 for the last axis). | |
// By default ArgMaxLayer maximizes over the flattened trailing dimensions | |
// for each index of the first / num dimension. | |
optional int32 axis = 3; | |
} | |
message ConcatParameter { | |
// The axis along which to concatenate -- may be negative to index from the | |
// end (e.g., -1 for the last axis). Other axes must have the | |
// same dimension for all the bottom blobs. | |
// By default, ConcatLayer concatenates blobs along the "channels" axis (1). | |
optional int32 axis = 2 [default = 1]; | |
// DEPRECATED: alias for "axis" -- does not support negative indexing. | |
optional uint32 concat_dim = 1 [default = 1]; | |
} | |
message BatchNormParameter { | |
// If false, accumulate global mean/variance values via a moving average. If | |
// true, use those accumulated values instead of computing mean/variance | |
// across the batch. | |
optional bool use_global_stats = 1; | |
// How much does the moving average decay each iteration? | |
optional float moving_average_fraction = 2 [default = .999]; | |
// Small value to add to the variance estimate so that we don't divide by | |
// zero. | |
optional float eps = 3 [default = 1e-5]; | |
} | |
message BiasParameter { | |
// The first axis of bottom[0] (the first input Blob) along which to apply | |
// bottom[1] (the second input Blob). May be negative to index from the end | |
// (e.g., -1 for the last axis). | |
// | |
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output | |
// top[0] will have the same shape, and bottom[1] may have any of the | |
// following shapes (for the given value of axis): | |
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60 | |
// (axis == 1 == -3) 3; 3x40; 3x40x60 | |
// (axis == 2 == -2) 40; 40x60 | |
// (axis == 3 == -1) 60 | |
// Furthermore, bottom[1] may have the empty shape (regardless of the value of | |
// "axis") -- a scalar bias. | |
optional int32 axis = 1 [default = 1]; | |
// (num_axes is ignored unless just one bottom is given and the bias is | |
// a learned parameter of the layer. Otherwise, num_axes is determined by the | |
// number of axes by the second bottom.) | |
// The number of axes of the input (bottom[0]) covered by the bias | |
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`. | |
// Set num_axes := 0, to add a zero-axis Blob: a scalar. | |
optional int32 num_axes = 2 [default = 1]; | |
// (filler is ignored unless just one bottom is given and the bias is | |
// a learned parameter of the layer.) | |
// The initialization for the learned bias parameter. | |
// Default is the zero (0) initialization, resulting in the BiasLayer | |
// initially performing the identity operation. | |
optional FillerParameter filler = 3; | |
} | |
// Message that stores parameters used by BN (Batch Normalization) layer | |
message BNParameter { | |
enum BNMode { | |
LEARN = 0; | |
INFERENCE = 1; | |
} | |
optional BNMode bn_mode = 3 [default = LEARN]; | |
optional FillerParameter scale_filler = 1; // The filler for the scale | |
optional FillerParameter shift_filler = 2; // The filler for the shift | |
} | |
message ContrastiveLossParameter { | |
// margin for dissimilar pair | |
optional float margin = 1 [default = 1.0]; | |
// The first implementation of this cost did not exactly match the cost of | |
// Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2. | |
// legacy_version = false (the default) uses (margin - d)^2 as proposed in the | |
// Hadsell paper. New models should probably use this version. | |
// legacy_version = true uses (margin - d^2). This is kept to support / | |
// reproduce existing models and results | |
optional bool legacy_version = 2 [default = false]; | |
} | |
message ConvolutionParameter { | |
optional uint32 num_output = 1; // The number of outputs for the layer | |
optional bool bias_term = 2 [default = true]; // whether to have bias terms | |
// Pad, kernel size, and stride are all given as a single value for equal | |
// dimensions in all spatial dimensions, or once per spatial dimension. | |
repeated uint32 pad = 3; // The padding size; defaults to 0 | |
repeated uint32 kernel_size = 4; // The kernel size | |
repeated uint32 stride = 6; // The stride; defaults to 1 | |
// Factor used to dilate the kernel, (implicitly) zero-filling the resulting | |
// holes. (Kernel dilation is sometimes referred to by its use in the | |
// algorithme à trous from Holschneider et al. 1987.) | |
repeated uint32 dilation = 18; // The dilation; defaults to 1 | |
// For 2D convolution only, the *_h and *_w versions may also be used to | |
// specify both spatial dimensions. | |
optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only) | |
optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only) | |
optional uint32 kernel_h = 11; // The kernel height (2D only) | |
optional uint32 kernel_w = 12; // The kernel width (2D only) | |
optional uint32 stride_h = 13; // The stride height (2D only) | |
optional uint32 stride_w = 14; // The stride width (2D only) | |
optional uint32 group = 5 [default = 1]; // The group size for group conv | |
optional FillerParameter weight_filler = 7; // The filler for the weight | |
optional FillerParameter bias_filler = 8; // The filler for the bias | |
enum Engine { | |
DEFAULT = 0; | |
CAFFE = 1; | |
CUDNN = 2; | |
} | |
optional Engine engine = 15 [default = DEFAULT]; | |
// The axis to interpret as "channels" when performing convolution. | |
// Preceding dimensions are treated as independent inputs; | |
// succeeding dimensions are treated as "spatial". | |
// With (N, C, H, W) inputs, and axis == 1 (the default), we perform | |
// N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for | |
// groups g>1) filters across the spatial axes (H, W) of the input. | |
// With (N, C, D, H, W) inputs, and axis == 1, we perform | |
// N independent 3D convolutions, sliding (C/g)-channels | |
// filters across the spatial axes (D, H, W) of the input. | |
optional int32 axis = 16 [default = 1]; | |
// Whether to force use of the general ND convolution, even if a specific | |
// implementation for blobs of the appropriate number of spatial dimensions | |
// is available. (Currently, there is only a 2D-specific convolution | |
// implementation; for input blobs with num_axes != 2, this option is | |
// ignored and the ND implementation will be used.) | |
optional bool force_nd_im2col = 17 [default = false]; | |
} | |
message CropParameter { | |
// To crop, elements of the first bottom are selected to fit the dimensions | |
// of the second, reference bottom. The crop is configured by | |
// - the crop `axis` to pick the dimensions for cropping | |
// - the crop `offset` to set the shift for all/each dimension | |
// to align the cropped bottom with the reference bottom. | |
// All dimensions up to but excluding `axis` are preserved, while | |
// the dimensions including and trailing `axis` are cropped. | |
// If only one `offset` is set, then all dimensions are offset by this amount. | |
// Otherwise, the number of offsets must equal the number of cropped axes to | |
// shift the crop in each dimension accordingly. | |
// Note: standard dimensions are N,C,H,W so the default is a spatial crop, | |
// and `axis` may be negative to index from the end (e.g., -1 for the last | |
// axis). | |
optional int32 axis = 1 [default = 2]; | |
repeated uint32 offset = 2; | |
} | |
message DataParameter { | |
enum DB { | |
LEVELDB = 0; | |
LMDB = 1; | |
} | |
// Specify the data source. | |
optional string source = 1; | |
// Specify the batch size. | |
optional uint32 batch_size = 4; | |
// The rand_skip variable is for the data layer to skip a few data points | |
// to avoid all asynchronous sgd clients to start at the same point. The skip | |
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not | |
// be larger than the number of keys in the database. | |
// DEPRECATED. Each solver accesses a different subset of the database. | |
optional uint32 rand_skip = 7 [default = 0]; | |
optional DB backend = 8 [default = LEVELDB]; | |
// DEPRECATED. See TransformationParameter. For data pre-processing, we can do | |
// simple scaling and subtracting the data mean, if provided. Note that the | |
// mean subtraction is always carried out before scaling. | |
optional float scale = 2 [default = 1]; | |
optional string mean_file = 3; | |
// DEPRECATED. See TransformationParameter. Specify if we would like to randomly | |
// crop an image. | |
optional uint32 crop_size = 5 [default = 0]; | |
// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror | |
// data. | |
optional bool mirror = 6 [default = false]; | |
// Force the encoded image to have 3 color channels | |
optional bool force_encoded_color = 9 [default = false]; | |
// Prefetch queue (Number of batches to prefetch to host memory, increase if | |
// data access bandwidth varies). | |
optional uint32 prefetch = 10 [default = 4]; | |
} | |
message NonMaximumSuppressionParameter { | |
// Threshold to be used in nms. | |
optional float nms_threshold = 1 [default = 0.3]; | |
// Maximum number of results to be kept. | |
optional int32 top_k = 2; | |
// Parameter for adaptive nms. | |
optional float eta = 3 [default = 1.0]; | |
} | |
message SaveOutputParameter { | |
// Output directory. If not empty, we will save the results. | |
optional string output_directory = 1; | |
// Output name prefix. | |
optional string output_name_prefix = 2; | |
// Output format. | |
// VOC - PASCAL VOC output format. | |
// COCO - MS COCO output format. | |
optional string output_format = 3; | |
// If you want to output results, must also provide the following two files. | |
// Otherwise, we will ignore saving results. | |
// label map file. | |
optional string label_map_file = 4; | |
// A file which contains a list of names and sizes with same order | |
// of the input DB. The file is in the following format: | |
// name height width | |
// ... | |
optional string name_size_file = 5; | |
// Number of test images. It can be less than the lines specified in | |
// name_size_file. For example, when we only want to evaluate on part | |
// of the test images. | |
optional uint32 num_test_image = 6; | |
// The resize parameter used in saving the data. | |
optional ResizeParameter resize_param = 7; | |
} | |
// Message that store parameters used by DetectionOutputLayer | |
message DetectionOutputParameter { | |
// Number of classes to be predicted. Required! | |
optional uint32 num_classes = 1; | |
// If true, bounding box are shared among different classes. | |
optional bool share_location = 2 [default = true]; | |
// Background label id. If there is no background class, | |
// set it as -1. | |
optional int32 background_label_id = 3 [default = 0]; | |
// Parameters used for non maximum suppression. | |
optional NonMaximumSuppressionParameter nms_param = 4; | |
// Parameters used for saving detection results. | |
optional SaveOutputParameter save_output_param = 5; | |
// Type of coding method for bbox. | |
optional PriorBoxParameter.CodeType code_type = 6 [default = CORNER]; | |
// If true, variance is encoded in target; otherwise we need to adjust the | |
// predicted offset accordingly. | |
optional bool variance_encoded_in_target = 8 [default = false]; | |
// Number of total bboxes to be kept per image after nms step. | |
// -1 means keeping all bboxes after nms step. | |
optional int32 keep_top_k = 7 [default = -1]; | |
// Only consider detections whose confidences are larger than a threshold. | |
// If not provided, consider all boxes. | |
optional float confidence_threshold = 9; | |
// If true, visualize the detection results. | |
optional bool visualize = 10 [default = false]; | |
// The threshold used to visualize the detection results. | |
optional float visualize_threshold = 11; | |
// If provided, save outputs to video file. | |
optional string save_file = 12; | |
} | |
message YoloDetectionOutputParameter { | |
// Yolo detection output layer | |
optional uint32 side = 1 [default = 13]; | |
optional uint32 num_classes = 2 [default = 20]; | |
optional uint32 num_box = 3 [default = 5]; | |
optional uint32 coords = 4 [default = 4]; | |
optional float confidence_threshold = 5 [default = 0.01]; | |
optional float nms_threshold = 6 [default = 0.45]; | |
repeated float biases = 7; | |
optional string label_map_file = 8; | |
} | |
message Yolov3DetectionOutputParameter { | |
// Yolov3 detection output layer | |
// Yolo detection output layer | |
optional uint32 num_classes = 1 [default = 20]; | |
optional uint32 num_box = 2 [default = 3]; | |
optional float confidence_threshold = 3 [default = 0.01]; | |
optional float nms_threshold = 4 [default = 0.45]; | |
repeated float biases = 5; | |
repeated uint32 anchors_scale = 6 ; | |
optional uint32 mask_group_num = 7 [default = 2]; | |
repeated uint32 mask = 8; | |
} | |
message DropoutParameter { | |
optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio | |
optional bool scale_train = 2 [default = true]; // scale train or test phase | |
} | |
// DummyDataLayer fills any number of arbitrarily shaped blobs with random | |
// (or constant) data generated by "Fillers" (see "message FillerParameter"). | |
message DummyDataParameter { | |
// This layer produces N >= 1 top blobs. DummyDataParameter must specify 1 or N | |
// shape fields, and 0, 1 or N data_fillers. | |
// | |
// If 0 data_fillers are specified, ConstantFiller with a value of 0 is used. | |
// If 1 data_filler is specified, it is applied to all top blobs. If N are | |
// specified, the ith is applied to the ith top blob. | |
repeated FillerParameter data_filler = 1; | |
repeated BlobShape shape = 6; | |
// 4D dimensions -- deprecated. Use "shape" instead. | |
repeated uint32 num = 2; | |
repeated uint32 channels = 3; | |
repeated uint32 height = 4; | |
repeated uint32 width = 5; | |
} | |
message EltwiseParameter { | |
enum EltwiseOp { | |
PROD = 0; | |
SUM = 1; | |
MAX = 2; | |
} | |
optional EltwiseOp operation = 1 [default = SUM]; // element-wise operation | |
repeated float coeff = 2; // blob-wise coefficient for SUM operation | |
// Whether to use an asymptotically slower (for >2 inputs) but stabler method | |
// of computing the gradient for the PROD operation. (No effect for SUM op.) | |
optional bool stable_prod_grad = 3 [default = true]; | |
} | |
// Message that stores parameters used by ELULayer | |
message ELUParameter { | |
// Described in: | |
// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate | |
// Deep Network Learning by Exponential Linear Units (ELUs). arXiv | |
optional float alpha = 1 [default = 1]; | |
} | |
// Message that stores parameters used by EmbedLayer | |
message EmbedParameter { | |
optional uint32 num_output = 1; // The number of outputs for the layer | |
// The input is given as integers to be interpreted as one-hot | |
// vector indices with dimension num_input. Hence num_input should be | |
// 1 greater than the maximum possible input value. | |
optional uint32 input_dim = 2; | |
optional bool bias_term = 3 [default = true]; // Whether to use a bias term | |
optional FillerParameter weight_filler = 4; // The filler for the weight | |
optional FillerParameter bias_filler = 5; // The filler for the bias | |
} | |
// Message that stores parameters used by ExpLayer | |
message ExpParameter { | |
// ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0. | |
// Or if base is set to the default (-1), base is set to e, | |
// so y = exp(shift + scale * x). | |
optional float base = 1 [default = -1.0]; | |
optional float scale = 2 [default = 1.0]; | |
optional float shift = 3 [default = 0.0]; | |
} | |
/// Message that stores parameters used by FlattenLayer | |
message FlattenParameter { | |
// The first axis to flatten: all preceding axes are retained in the output. | |
// May be negative to index from the end (e.g., -1 for the last axis). | |
optional int32 axis = 1 [default = 1]; | |
// The last axis to flatten: all following axes are retained in the output. | |
// May be negative to index from the end (e.g., the default -1 for the last | |
// axis). | |
optional int32 end_axis = 2 [default = -1]; | |
} | |
// Message that stores parameters used by HDF5DataLayer | |
message HDF5DataParameter { | |
// Specify the data source. | |
optional string source = 1; | |
// Specify the batch size. | |
optional uint32 batch_size = 2; | |
// Specify whether to shuffle the data. | |
// If shuffle == true, the ordering of the HDF5 files is shuffled, | |
// and the ordering of data within any given HDF5 file is shuffled, | |
// but data between different files are not interleaved; all of a file's | |
// data are output (in a random order) before moving onto another file. | |
optional bool shuffle = 3 [default = false]; | |
} | |
message HDF5OutputParameter { | |
optional string file_name = 1; | |
} | |
message HingeLossParameter { | |
enum Norm { | |
L1 = 1; | |
L2 = 2; | |
} | |
// Specify the Norm to use L1 or L2 | |
optional Norm norm = 1 [default = L1]; | |
} | |
message ImageDataParameter { | |
// Specify the data source. | |
optional string source = 1; | |
// Specify the batch size. | |
optional uint32 batch_size = 4 [default = 1]; | |
// The rand_skip variable is for the data layer to skip a few data points | |
// to avoid all asynchronous sgd clients to start at the same point. The skip | |
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not | |
// be larger than the number of keys in the database. | |
optional uint32 rand_skip = 7 [default = 0]; | |
// Whether or not ImageLayer should shuffle the list of files at every epoch. | |
optional bool shuffle = 8 [default = false]; | |
// It will also resize images if new_height or new_width are not zero. | |
optional uint32 new_height = 9 [default = 0]; | |
optional uint32 new_width = 10 [default = 0]; | |
// Specify if the images are color or gray | |
optional bool is_color = 11 [default = true]; | |
// DEPRECATED. See TransformationParameter. For data pre-processing, we can do | |
// simple scaling and subtracting the data mean, if provided. Note that the | |
// mean subtraction is always carried out before scaling. | |
optional float scale = 2 [default = 1]; | |
optional string mean_file = 3; | |
// DEPRECATED. See TransformationParameter. Specify if we would like to randomly | |
// crop an image. | |
optional uint32 crop_size = 5 [default = 0]; | |
// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror | |
// data. | |
optional bool mirror = 6 [default = false]; | |
optional string root_folder = 12 [default = ""]; | |
} | |
message InfogainLossParameter { | |
// Specify the infogain matrix source. | |
optional string source = 1; | |
} | |
message InnerProductParameter { | |
optional uint32 num_output = 1; // The number of outputs for the layer | |
optional bool bias_term = 2 [default = true]; // whether to have bias terms | |
optional FillerParameter weight_filler = 3; // The filler for the weight | |
optional FillerParameter bias_filler = 4; // The filler for the bias | |
// The first axis to be lumped into a single inner product computation; | |
// all preceding axes are retained in the output. | |
// May be negative to index from the end (e.g., -1 for the last axis). | |
optional int32 axis = 5 [default = 1]; | |
// Specify whether to transpose the weight matrix or not. | |
// If transpose == true, any operations will be performed on the transpose | |
// of the weight matrix. The weight matrix itself is not going to be transposed | |
// but rather the transfer flag of operations will be toggled accordingly. | |
optional bool transpose = 6 [default = false]; | |
} | |
message InputParameter { | |
// This layer produces N >= 1 top blob(s) to be assigned manually. | |
// Define N shapes to set a shape for each top. | |
// Define 1 shape to set the same shape for every top. | |
// Define no shape to defer to reshaping manually. | |
repeated BlobShape shape = 1; | |
} | |
message InterpParameter { | |
optional int32 height = 1 [default = 0]; // Height of output | |
optional int32 width = 2 [default = 0]; // Width of output | |
optional int32 zoom_factor = 3 [default = 1]; // zoom factor | |
optional int32 shrink_factor = 4 [default = 1]; // shrink factor | |
optional int32 pad_beg = 5 [default = 0]; // padding at begin of input | |
optional int32 pad_end = 6 [default = 0]; // padding at end of input | |
} | |
// Message that stores parameters used by LogLayer | |
message LogParameter { | |
// LogLayer computes outputs y = log_base(shift + scale * x), for base > 0. | |
// Or if base is set to the default (-1), base is set to e, | |
// so y = ln(shift + scale * x) = log_e(shift + scale * x) | |
optional float base = 1 [default = -1.0]; | |
optional float scale = 2 [default = 1.0]; | |
optional float shift = 3 [default = 0.0]; | |
} | |
// Message that stores parameters used by LRNLayer | |
message LRNParameter { | |
optional uint32 local_size = 1 [default = 5]; | |
optional float alpha = 2 [default = 1.]; | |
optional float beta = 3 [default = 0.75]; | |
enum NormRegion { | |
ACROSS_CHANNELS = 0; | |
WITHIN_CHANNEL = 1; | |
} | |
optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS]; | |
optional float k = 5 [default = 1.]; | |
enum Engine { | |
DEFAULT = 0; | |
CAFFE = 1; | |
CUDNN = 2; | |
} | |
optional Engine engine = 6 [default = DEFAULT]; | |
} | |
message MemoryDataParameter { | |
optional uint32 batch_size = 1; | |
optional uint32 channels = 2; | |
optional uint32 height = 3; | |
optional uint32 width = 4; | |
} | |
message MVNParameter { | |
// This parameter can be set to false to normalize mean only | |
optional bool normalize_variance = 1 [default = true]; | |
// This parameter can be set to true to perform DNN-like MVN | |
optional bool across_channels = 2 [default = false]; | |
// Epsilon for not dividing by zero while normalizing variance | |
optional float eps = 3 [default = 1e-9]; | |
} | |
// Message that stores parameters used by NormalizeLayer | |
message NormalizeParameter { | |
optional bool across_spatial = 1 [default = true]; | |
// Initial value of scale. Default is 1.0 for all | |
optional FillerParameter scale_filler = 2; | |
// Whether or not scale parameters are shared across channels. | |
optional bool channel_shared = 3 [default = true]; | |
// Epsilon for not dividing by zero while normalizing variance | |
optional float eps = 4 [default = 1e-10]; | |
} | |
message PermuteParameter { | |
// The new orders of the axes of data. Notice it should be with | |
// in the same range as the input data, and it starts from 0. | |
// Do not provide repeated order. | |
repeated uint32 order = 1; | |
} | |
message PoolingParameter { | |
enum PoolMethod { | |
MAX = 0; | |
AVE = 1; | |
STOCHASTIC = 2; | |
} | |
optional PoolMethod pool = 1 [default = MAX]; // The pooling method | |
// Pad, kernel size, and stride are all given as a single value for equal | |
// dimensions in height and width or as Y, X pairs. | |
optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X) | |
optional uint32 pad_h = 9 [default = 0]; // The padding height | |
optional uint32 pad_w = 10 [default = 0]; // The padding width | |
optional uint32 kernel_size = 2; // The kernel size (square) | |
optional uint32 kernel_h = 5; // The kernel height | |
optional uint32 kernel_w = 6; // The kernel width | |
optional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X) | |
optional uint32 stride_h = 7; // The stride height | |
optional uint32 stride_w = 8; // The stride width | |
enum Engine { | |
DEFAULT = 0; | |
CAFFE = 1; | |
CUDNN = 2; | |
} | |
optional Engine engine = 11 [default = DEFAULT]; | |
// If global_pooling then it will pool over the size of the bottom by doing | |
// kernel_h = bottom->height and kernel_w = bottom->width | |
optional bool global_pooling = 12 [default = false]; | |
} | |
message PowerParameter { | |
// PowerLayer computes outputs y = (shift + scale * x) ^ power. | |
optional float power = 1 [default = 1.0]; | |
optional float scale = 2 [default = 1.0]; | |
optional float shift = 3 [default = 0.0]; | |
} | |
// Message that store parameters used by PriorBoxLayer | |
message PriorBoxParameter { | |
// Encode/decode type. | |
enum CodeType { | |
CORNER = 1; | |
CENTER_SIZE = 2; | |
CORNER_SIZE = 3; | |
} | |
// Minimum box size (in pixels). Required! | |
repeated float min_size = 1; | |
// Maximum box size (in pixels). Required! | |
repeated float max_size = 2; | |
// Various of aspect ratios. Duplicate ratios will be ignored. | |
// If none is provided, we use default ratio 1. | |
repeated float aspect_ratio = 3; | |
// If true, will flip each aspect ratio. | |
// For example, if there is aspect ratio "r", | |
// we will generate aspect ratio "1.0/r" as well. | |
optional bool flip = 4 [default = true]; | |
// If true, will clip the prior so that it is within [0, 1] | |
optional bool clip = 5 [default = false]; | |
// Variance for adjusting the prior bboxes. | |
repeated float variance = 6; | |
// By default, we calculate img_height, img_width, step_x, step_y based on | |
// bottom[0] (feat) and bottom[1] (img). Unless these values are explicitly | |
// provided. | |
// Explicitly provide the img_size. | |
optional uint32 img_size = 7; | |
// Either img_size or img_h/img_w should be specified; not both. | |
optional uint32 img_h = 8; | |
optional uint32 img_w = 9; | |
// Explicitly provide the step size. | |
optional float step = 10; | |
// Either step or step_h/step_w should be specified; not both. | |
optional float step_h = 11; | |
optional float step_w = 12; | |
// Offset to the top left corner of each cell. | |
optional float offset = 13 [default = 0.5]; | |
} | |
message PSROIPoolingParameter { | |
required float spatial_scale = 1; | |
required int32 output_dim = 2; // output channel number | |
required int32 group_size = 3; // number of groups to encode position-sensitive score maps | |
} | |
message PythonParameter { | |
optional string module = 1; | |
optional string layer = 2; | |
// This value is set to the attribute `param_str` of the `PythonLayer` object | |
// in Python before calling the `setup()` method. This could be a number, | |
// string, dictionary in Python dict format, JSON, etc. You may parse this | |
// string in `setup` method and use it in `forward` and `backward`. | |
optional string param_str = 3 [default = '']; | |
// Whether this PythonLayer is shared among worker solvers during data parallelism. | |
// If true, each worker solver sequentially run forward from this layer. | |
// This value should be set true if you are using it as a data layer. | |
optional bool share_in_parallel = 4 [default = false]; | |
} | |
// Message that stores parameters used by RecurrentLayer | |
message RecurrentParameter { | |
// The dimension of the output (and usually hidden state) representation -- | |
// must be explicitly set to non-zero. | |
optional uint32 num_output = 1 [default = 0]; | |
optional FillerParameter weight_filler = 2; // The filler for the weight | |
optional FillerParameter bias_filler = 3; // The filler for the bias | |
// Whether to enable displaying debug_info in the unrolled recurrent net. | |
optional bool debug_info = 4 [default = false]; | |
// Whether to add as additional inputs (bottoms) the initial hidden state | |
// blobs, and add as additional outputs (tops) the final timestep hidden state | |
// blobs. The number of additional bottom/top blobs required depends on the | |
// recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs. | |
optional bool expose_hidden = 5 [default = false]; | |
} | |
// Message that stores parameters used by ReductionLayer | |
message ReductionParameter { | |
enum ReductionOp { | |
SUM = 1; | |
ASUM = 2; | |
SUMSQ = 3; | |
MEAN = 4; | |
} | |
optional ReductionOp operation = 1 [default = SUM]; // reduction operation | |
// The first axis to reduce to a scalar -- may be negative to index from the | |
// end (e.g., -1 for the last axis). | |
// (Currently, only reduction along ALL "tail" axes is supported; reduction | |
// of axis M through N, where N < num_axes - 1, is unsupported.) | |
// Suppose we have an n-axis bottom Blob with shape: | |
// (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)). | |
// If axis == m, the output Blob will have shape | |
// (d0, d1, d2, ..., d(m-1)), | |
// and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1)) | |
// times, each including (dm * d(m+1) * ... * d(n-1)) individual data. | |
// If axis == 0 (the default), the output Blob always has the empty shape | |
// (count 1), performing reduction across the entire input -- | |
// often useful for creating new loss functions. | |
optional int32 axis = 2 [default = 0]; | |
optional float coeff = 3 [default = 1.0]; // coefficient for output | |
} | |
// Message that stores parameters used by ReLULayer | |
message ReLUParameter { | |
// Allow non-zero slope for negative inputs to speed up optimization | |
// Described in: | |
// Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities | |
// improve neural network acoustic models. In ICML Workshop on Deep Learning | |
// for Audio, Speech, and Language Processing. | |
optional float negative_slope = 1 [default = 0]; | |
enum Engine { | |
DEFAULT = 0; | |
CAFFE = 1; | |
CUDNN = 2; | |
} | |
optional Engine engine = 2 [default = DEFAULT]; | |
} | |
message ReorgParameter { | |
optional uint32 stride = 1; | |
optional bool reverse = 2 [default = false]; | |
} | |
message ReshapeParameter { | |
// Specify the output dimensions. If some of the dimensions are set to 0, | |
// the corresponding dimension from the bottom layer is used (unchanged). | |
// Exactly one dimension may be set to -1, in which case its value is | |
// inferred from the count of the bottom blob and the remaining dimensions. | |
// For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8: | |
// | |
// layer { | |
// type: "Reshape" bottom: "input" top: "output" | |
// reshape_param { ... } | |
// } | |
// | |
// If "input" is 2D with shape 2 x 8, then the following reshape_param | |
// specifications are all equivalent, producing a 3D blob "output" with shape | |
// 2 x 2 x 4: | |
// | |
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } } | |
// reshape_param { shape { dim: 0 dim: 2 dim: 4 } } | |
// reshape_param { shape { dim: 0 dim: 2 dim: -1 } } | |
// reshape_param { shape { dim: -1 dim: 0 dim: 2 } } | |
// | |
optional BlobShape shape = 1; | |
// axis and num_axes control the portion of the bottom blob's shape that are | |
// replaced by (included in) the reshape. By default (axis == 0 and | |
// num_axes == -1), the entire bottom blob shape is included in the reshape, | |
// and hence the shape field must specify the entire output shape. | |
// | |
// axis may be non-zero to retain some portion of the beginning of the input | |
// shape (and may be negative to index from the end; e.g., -1 to begin the | |
// reshape after the last axis, including nothing in the reshape, | |
// -2 to include only the last axis, etc.). | |
// | |
// For example, suppose "input" is a 2D blob with shape 2 x 8. | |
// Then the following ReshapeLayer specifications are all equivalent, | |
// producing a blob "output" with shape 2 x 2 x 4: | |
// | |
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } } | |
// reshape_param { shape { dim: 2 dim: 4 } axis: 1 } | |
// reshape_param { shape { dim: 2 dim: 4 } axis: -3 } | |
// | |
// num_axes specifies the extent of the reshape. | |
// If num_axes >= 0 (and axis >= 0), the reshape will be performed only on | |
// input axes in the range [axis, axis+num_axes]. | |
// num_axes may also be -1, the default, to include all remaining axes | |
// (starting from axis). | |
// | |
// For example, suppose "input" is a 2D blob with shape 2 x 8. | |
// Then the following ReshapeLayer specifications are equivalent, | |
// producing a blob "output" with shape 1 x 2 x 8. | |
// | |
// reshape_param { shape { dim: 1 dim: 2 dim: 8 } } | |
// reshape_param { shape { dim: 1 dim: 2 } num_axes: 1 } | |
// reshape_param { shape { dim: 1 } num_axes: 0 } | |
// | |
// On the other hand, these would produce output blob shape 2 x 1 x 8: | |
// | |
// reshape_param { shape { dim: 2 dim: 1 dim: 8 } } | |
// reshape_param { shape { dim: 1 } axis: 1 num_axes: 0 } | |
// | |
optional int32 axis = 2 [default = 0]; | |
optional int32 num_axes = 3 [default = -1]; | |
} | |
message ROIAlignParameter { | |
// Pad, kernel size, and stride are all given as a single value for equal | |
// dimensions in height and width or as Y, X pairs. | |
optional uint32 pooled_h = 1 [default = 0]; // The pooled output height | |
optional uint32 pooled_w = 2 [default = 0]; // The pooled output width | |
// Multiplicative spatial scale factor to translate ROI coords from their | |
// input scale to the scale used when pooling | |
optional float spatial_scale = 3 [default = 1]; | |
} | |
// Message that stores parameters used by ROIPoolingLayer | |
message ROIPoolingParameter { | |
// Pad, kernel size, and stride are all given as a single value for equal | |
// dimensions in height and width or as Y, X pairs. | |
optional uint32 pooled_h = 1 [default = 0]; // The pooled output height | |
optional uint32 pooled_w = 2 [default = 0]; // The pooled output width | |
// Multiplicative spatial scale factor to translate ROI coords from their | |
// input scale to the scale used when pooling | |
optional float spatial_scale = 3 [default = 1]; | |
} | |
message ScaleParameter { | |
// The first axis of bottom[0] (the first input Blob) along which to apply | |
// bottom[1] (the second input Blob). May be negative to index from the end | |
// (e.g., -1 for the last axis). | |
// | |
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output | |
// top[0] will have the same shape, and bottom[1] may have any of the | |
// following shapes (for the given value of axis): | |
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60 | |
// (axis == 1 == -3) 3; 3x40; 3x40x60 | |
// (axis == 2 == -2) 40; 40x60 | |
// (axis == 3 == -1) 60 | |
// Furthermore, bottom[1] may have the empty shape (regardless of the value of | |
// "axis") -- a scalar multiplier. | |
optional int32 axis = 1 [default = 1]; | |
// (num_axes is ignored unless just one bottom is given and the scale is | |
// a learned parameter of the layer. Otherwise, num_axes is determined by the | |
// number of axes by the second bottom.) | |
// The number of axes of the input (bottom[0]) covered by the scale | |
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`. | |
// Set num_axes := 0, to multiply with a zero-axis Blob: a scalar. | |
optional int32 num_axes = 2 [default = 1]; | |
// (filler is ignored unless just one bottom is given and the scale is | |
// a learned parameter of the layer.) | |
// The initialization for the learned scale parameter. | |
// Default is the unit (1) initialization, resulting in the ScaleLayer | |
// initially performing the identity operation. | |
optional FillerParameter filler = 3; | |
// Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but | |
// may be more efficient). Initialized with bias_filler (defaults to 0). | |
optional bool bias_term = 4 [default = false]; | |
optional FillerParameter bias_filler = 5; | |
} | |
message ShuffleChannelParameter { | |
// first introduced by | |
// "ShuffleNet: An Extremely Efficient Convolutional Neural Network | |
// for Mobile Devices" | |
optional uint32 group = 1[default = 1]; // The number of group | |
} | |
message SigmoidParameter { | |
enum Engine { | |
DEFAULT = 0; | |
CAFFE = 1; | |
CUDNN = 2; | |
} | |
optional Engine engine = 1 [default = DEFAULT]; | |
} | |
message SmoothL1LossParameter { | |
// SmoothL1Loss(x) = | |
// 0.5 * (sigma * x) ** 2 -- if x < 1.0 / sigma / sigma | |
// |x| - 0.5 / sigma / sigma -- otherwise | |
optional float sigma = 1 [default = 1]; | |
} | |
message SliceParameter { | |
// The axis along which to slice -- may be negative to index from the end | |
// (e.g., -1 for the last axis). | |
// By default, SliceLayer concatenates blobs along the "channels" axis (1). | |
optional int32 axis = 3 [default = 1]; | |
repeated uint32 slice_point = 2; | |
// DEPRECATED: alias for "axis" -- does not support negative indexing. | |
optional uint32 slice_dim = 1 [default = 1]; | |
} | |
// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer | |
message SoftmaxParameter { | |
enum Engine { | |
DEFAULT = 0; | |
CAFFE = 1; | |
CUDNN = 2; | |
} | |
optional Engine engine = 1 [default = DEFAULT]; | |
// The axis along which to perform the softmax -- may be negative to index | |
// from the end (e.g., -1 for the last axis). | |
// Any other axes will be evaluated as independent softmaxes. | |
optional int32 axis = 2 [default = 1]; | |
} | |
message TanHParameter { | |
enum Engine { | |
DEFAULT = 0; | |
CAFFE = 1; | |
CUDNN = 2; | |
} | |
optional Engine engine = 1 [default = DEFAULT]; | |
} | |
// Message that stores parameters used by TileLayer | |
message TileParameter { | |
// The index of the axis to tile. | |
optional int32 axis = 1 [default = 1]; | |
// The number of copies (tiles) of the blob to output. | |
optional int32 tiles = 2; | |
} | |
// Message that stores parameters used by ThresholdLayer | |
message ThresholdParameter { | |
optional float threshold = 1 [default = 0]; // Strictly positive values | |
} | |
message WindowDataParameter { | |
// Specify the data source. | |
optional string source = 1; | |
// For data pre-processing, we can do simple scaling and subtracting the | |
// data mean, if provided. Note that the mean subtraction is always carried | |
// out before scaling. | |
optional float scale = 2 [default = 1]; | |
optional string mean_file = 3; | |
// Specify the batch size. | |
optional uint32 batch_size = 4; | |
// Specify if we would like to randomly crop an image. | |
optional uint32 crop_size = 5 [default = 0]; | |
// Specify if we want to randomly mirror data. | |
optional bool mirror = 6 [default = false]; | |
// Foreground (object) overlap threshold | |
optional float fg_threshold = 7 [default = 0.5]; | |
// Background (non-object) overlap threshold | |
optional float bg_threshold = 8 [default = 0.5]; | |
// Fraction of batch that should be foreground objects | |
optional float fg_fraction = 9 [default = 0.25]; | |
// Amount of contextual padding to add around a window | |
// (used only by the window_data_layer) | |
optional uint32 context_pad = 10 [default = 0]; | |
// Mode for cropping out a detection window | |
// warp: cropped window is warped to a fixed size and aspect ratio | |
// square: the tightest square around the window is cropped | |
optional string crop_mode = 11 [default = "warp"]; | |
// cache_images: will load all images in memory for faster access | |
optional bool cache_images = 12 [default = false]; | |
// append root_folder to locate images | |
optional string root_folder = 13 [default = ""]; | |
} | |
message SPPParameter { | |
enum PoolMethod { | |
MAX = 0; | |
AVE = 1; | |
STOCHASTIC = 2; | |
} | |
optional uint32 pyramid_height = 1; | |
optional PoolMethod pool = 2 [default = MAX]; // The pooling method | |
enum Engine { | |
DEFAULT = 0; | |
CAFFE = 1; | |
CUDNN = 2; | |
} | |
optional Engine engine = 6 [default = DEFAULT]; | |
} | |
// DEPRECATED: use LayerParameter. | |
message V1LayerParameter { | |
repeated string bottom = 2; | |
repeated string top = 3; | |
optional string name = 4; | |
repeated NetStateRule include = 32; | |
repeated NetStateRule exclude = 33; | |
enum LayerType { | |
NONE = 0; | |
ABSVAL = 35; | |
ACCURACY = 1; | |
ARGMAX = 30; | |
BNLL = 2; | |
CONCAT = 3; | |
CONTRASTIVE_LOSS = 37; | |
CONVOLUTION = 4; | |
DATA = 5; | |
DECONVOLUTION = 39; | |
DROPOUT = 6; | |
DUMMY_DATA = 32; | |
EUCLIDEAN_LOSS = 7; | |
ELTWISE = 25; | |
EXP = 38; | |
FLATTEN = 8; | |
HDF5_DATA = 9; | |
HDF5_OUTPUT = 10; | |
HINGE_LOSS = 28; | |
IM2COL = 11; | |
IMAGE_DATA = 12; | |
INFOGAIN_LOSS = 13; | |
INNER_PRODUCT = 14; | |
LRN = 15; | |
MEMORY_DATA = 29; | |
MULTINOMIAL_LOGISTIC_LOSS = 16; | |
MVN = 34; | |
POOLING = 17; | |
POWER = 26; | |
RELU = 18; | |
SIGMOID = 19; | |
SIGMOID_CROSS_ENTROPY_LOSS = 27; | |
SILENCE = 36; | |
SOFTMAX = 20; | |
SOFTMAX_LOSS = 21; | |
SPLIT = 22; | |
SLICE = 33; | |
TANH = 23; | |
WINDOW_DATA = 24; | |
THRESHOLD = 31; | |
} | |
optional LayerType type = 5; | |
repeated BlobProto blobs = 6; | |
repeated string param = 1001; | |
repeated DimCheckMode blob_share_mode = 1002; | |
enum DimCheckMode { | |
STRICT = 0; | |
PERMISSIVE = 1; | |
} | |
repeated float blobs_lr = 7; | |
repeated float weight_decay = 8; | |
repeated float loss_weight = 35; | |
optional AccuracyParameter accuracy_param = 27; | |
optional ArgMaxParameter argmax_param = 23; | |
optional ConcatParameter concat_param = 9; | |
optional ContrastiveLossParameter contrastive_loss_param = 40; | |
optional ConvolutionParameter convolution_param = 10; | |
optional DataParameter data_param = 11; | |
optional DropoutParameter dropout_param = 12; | |
optional DummyDataParameter dummy_data_param = 26; | |
optional EltwiseParameter eltwise_param = 24; | |
optional ExpParameter exp_param = 41; | |
optional HDF5DataParameter hdf5_data_param = 13; | |
optional HDF5OutputParameter hdf5_output_param = 14; | |
optional HingeLossParameter hinge_loss_param = 29; | |
optional ImageDataParameter image_data_param = 15; | |
optional InfogainLossParameter infogain_loss_param = 16; | |
optional InnerProductParameter inner_product_param = 17; | |
optional LRNParameter lrn_param = 18; | |
optional MemoryDataParameter memory_data_param = 22; | |
optional MVNParameter mvn_param = 34; | |
optional PoolingParameter pooling_param = 19; | |
optional PowerParameter power_param = 21; | |
optional ReLUParameter relu_param = 30; | |
optional SigmoidParameter sigmoid_param = 38; | |
optional SoftmaxParameter softmax_param = 39; | |
optional SliceParameter slice_param = 31; | |
optional TanHParameter tanh_param = 37; | |
optional ThresholdParameter threshold_param = 25; | |
optional WindowDataParameter window_data_param = 20; | |
optional TransformationParameter transform_param = 36; | |
optional LossParameter loss_param = 42; | |
optional V0LayerParameter layer = 1; | |
} | |
// DEPRECATED: V0LayerParameter is the old way of specifying layer parameters | |
// in Caffe. We keep this message type around for legacy support. | |
message V0LayerParameter { | |
optional string name = 1; // the layer name | |
optional string type = 2; // the string to specify the layer type | |
// Parameters to specify layers with inner products. | |
optional uint32 num_output = 3; // The number of outputs for the layer | |
optional bool biasterm = 4 [default = true]; // whether to have bias terms | |
optional FillerParameter weight_filler = 5; // The filler for the weight | |
optional FillerParameter bias_filler = 6; // The filler for the bias | |
optional uint32 pad = 7 [default = 0]; // The padding size | |
optional uint32 kernelsize = 8; // The kernel size | |
optional uint32 group = 9 [default = 1]; // The group size for group conv | |
optional uint32 stride = 10 [default = 1]; // The stride | |
enum PoolMethod { | |
MAX = 0; | |
AVE = 1; | |
STOCHASTIC = 2; | |
} | |
optional PoolMethod pool = 11 [default = MAX]; // The pooling method | |
optional float dropout_ratio = 12 [default = 0.5]; // dropout ratio | |
optional uint32 local_size = 13 [default = 5]; // for local response norm | |
optional float alpha = 14 [default = 1.]; // for local response norm | |
optional float beta = 15 [default = 0.75]; // for local response norm | |
optional float k = 22 [default = 1.]; | |
// For data layers, specify the data source | |
optional string source = 16; | |
// For data pre-processing, we can do simple scaling and subtracting the | |
// data mean, if provided. Note that the mean subtraction is always carried | |
// out before scaling. | |
optional float scale = 17 [default = 1]; | |
optional string meanfile = 18; | |
// For data layers, specify the batch size. | |
optional uint32 batchsize = 19; | |
// For data layers, specify if we would like to randomly crop an image. | |
optional uint32 cropsize = 20 [default = 0]; | |
// For data layers, specify if we want to randomly mirror data. | |
optional bool mirror = 21 [default = false]; | |
// The blobs containing the numeric parameters of the layer | |
repeated BlobProto blobs = 50; | |
// The ratio that is multiplied on the global learning rate. If you want to | |
// set the learning ratio for one blob, you need to set it for all blobs. | |
repeated float blobs_lr = 51; | |
// The weight decay that is multiplied on the global weight decay. | |
repeated float weight_decay = 52; | |
// The rand_skip variable is for the data layer to skip a few data points | |
// to avoid all asynchronous sgd clients to start at the same point. The skip | |
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not | |
// be larger than the number of keys in the database. | |
optional uint32 rand_skip = 53 [default = 0]; | |
// Fields related to detection (det_*) | |
// foreground (object) overlap threshold | |
optional float det_fg_threshold = 54 [default = 0.5]; | |
// background (non-object) overlap threshold | |
optional float det_bg_threshold = 55 [default = 0.5]; | |
// Fraction of batch that should be foreground objects | |
optional float det_fg_fraction = 56 [default = 0.25]; | |
// optional bool OBSOLETE_can_clobber = 57 [default = true]; | |
// Amount of contextual padding to add around a window | |
// (used only by the window_data_layer) | |
optional uint32 det_context_pad = 58 [default = 0]; | |
// Mode for cropping out a detection window | |
// warp: cropped window is warped to a fixed size and aspect ratio | |
// square: the tightest square around the window is cropped | |
optional string det_crop_mode = 59 [default = "warp"]; | |
// For ReshapeLayer, one needs to specify the new dimensions. | |
optional int32 new_num = 60 [default = 0]; | |
optional int32 new_channels = 61 [default = 0]; | |
optional int32 new_height = 62 [default = 0]; | |
optional int32 new_width = 63 [default = 0]; | |
// Whether or not ImageLayer should shuffle the list of files at every epoch. | |
// It will also resize images if new_height or new_width are not zero. | |
optional bool shuffle_images = 64 [default = false]; | |
// For ConcatLayer, one needs to specify the dimension for concatenation, and | |
// the other dimensions must be the same for all the bottom blobs. | |
// By default it will concatenate blobs along the channels dimension. | |
optional uint32 concat_dim = 65 [default = 1]; | |
optional HDF5OutputParameter hdf5_output_param = 1001; | |
} | |
message PReLUParameter { | |
// Parametric ReLU described in K. He et al, Delving Deep into Rectifiers: | |
// Surpassing Human-Level Performance on ImageNet Classification, 2015. | |
// Initial value of a_i. Default is a_i=0.25 for all i. | |
optional FillerParameter filler = 1; | |
// Whether or not slope parameters are shared across channels. | |
optional bool channel_shared = 2 [default = false]; | |
} | |