|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "layer/convolutiondepthwise.h" |
|
#include "testutil.h" |
|
|
|
static int test_convolutiondepthwise_dynamic(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, int group) |
|
{ |
|
ncnn::Mat a = RandomMat(w, h, c); |
|
|
|
ncnn::ParamDict pd; |
|
pd.set(0, 0); |
|
pd.set(1, 0); |
|
pd.set(2, dilation); |
|
pd.set(3, stride); |
|
pd.set(4, pad); |
|
pd.set(5, bias); |
|
pd.set(6, 0); |
|
pd.set(7, group); |
|
pd.set(19, 1); |
|
|
|
int activation_type = RAND() % 7; |
|
ncnn::Mat activation_params(2); |
|
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); |
|
activation_params[1] = RandomFloat(0, 1); |
|
pd.set(9, activation_type); |
|
pd.set(10, activation_params); |
|
|
|
std::vector<ncnn::Mat> as(bias ? 3 : 2); |
|
as[0] = a; |
|
as[1] = RandomMat(kernel, kernel, c / group, outch); |
|
if (bias) |
|
as[2] = RandomMat(outch); |
|
|
|
std::vector<ncnn::Mat> weights(0); |
|
|
|
int ret = test_layer<ncnn::ConvolutionDepthWise>("ConvolutionDepthWise", pd, weights, as); |
|
if (ret != 0) |
|
{ |
|
fprintf(stderr, "test_convolutiondepthwise_dynamic failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d group=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, group, activation_type, activation_params[0], activation_params[1]); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int test_convolutiondepthwise_2() |
|
{ |
|
static const int kdsp[7][4] = { |
|
{1, 1, 1, 0}, |
|
{1, 1, 2, 0}, |
|
{2, 1, 1, 1}, |
|
{2, 1, 2, -233}, |
|
{3, 1, 1, 1}, |
|
{3, 1, 2, 1}, |
|
{3, 2, 1, -234}, |
|
}; |
|
|
|
for (int i = 0; i < 7; i++) |
|
{ |
|
const int k = kdsp[i][0]; |
|
const int d = kdsp[i][1]; |
|
const int s = kdsp[i][2]; |
|
const int p = kdsp[i][3]; |
|
|
|
int ret = 0 |
|
|| test_convolutiondepthwise_dynamic(11, 10, 1, 1, k, d, s, p, 1, 1) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 2, 2, k, d, s, p, 0, 1) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 2, 2, k, d, s, p, 1, 2) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 3, 3, k, d, s, p, 0, 3) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 4, 2, k, d, s, p, 1, 2) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 4, 4, k, d, s, p, 0, 4) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 7, 7, k, d, s, p, 1, 7) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 8, 8, k, d, s, p, 0, 2) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 8, 8, k, d, s, p, 1, 8) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 12, 12, k, d, s, p, 0, 4) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 15, 15, k, d, s, p, 1, 15) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 16, 8, k, d, s, p, 0, 2) |
|
|| test_convolutiondepthwise_dynamic(11, 10, 16, 16, k, d, s, p, 1, 16); |
|
|
|
if (ret != 0) |
|
return -1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
#if NCNN_INT8 |
|
static int test_convolutiondepthwise_int8(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, int group, bool requant = false) |
|
{ |
|
ncnn::Mat a = RandomMat(w, h, c); |
|
|
|
ncnn::ParamDict pd; |
|
pd.set(0, outch); |
|
pd.set(1, kernel); |
|
pd.set(2, dilation); |
|
pd.set(3, stride); |
|
pd.set(4, pad); |
|
pd.set(5, bias); |
|
pd.set(6, outch / group * c / group * kernel * kernel * group); |
|
pd.set(7, group); |
|
pd.set(8, requant ? 101 : 1); |
|
|
|
int activation_type = RAND() % 7; |
|
ncnn::Mat activation_params(2); |
|
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); |
|
activation_params[1] = RandomFloat(0, 1); |
|
pd.set(9, activation_type); |
|
pd.set(10, activation_params); |
|
|
|
std::vector<ncnn::Mat> weights(bias ? 5 : 4); |
|
weights[0] = RandomMat(outch / group * c / group * kernel * kernel * group); |
|
ncnn::Mat weight_scales = scales_mat(weights[0], group, c * kernel * kernel / group, c * kernel * kernel / group); |
|
ncnn::Mat input_scales = scales_mat(a, 1, w * h * c, a.cstep); |
|
ncnn::Mat top_scales = requant ? scales_mat(a, 1, w * h * c, a.cstep) : ncnn::Mat(); |
|
if (bias) |
|
{ |
|
weights[1] = RandomMat(outch); |
|
weights[2] = weight_scales; |
|
weights[3] = input_scales; |
|
weights[4] = top_scales; |
|
} |
|
else |
|
{ |
|
weights[1] = weight_scales; |
|
weights[2] = input_scales; |
|
weights[3] = top_scales; |
|
} |
|
|
|
int flag = TEST_LAYER_DISABLE_GPU_TESTING; |
|
int ret = test_layer<ncnn::ConvolutionDepthWise>("ConvolutionDepthWise", pd, weights, a, requant ? 1.0f : 0.001f, 0, flag); |
|
if (ret != 0) |
|
{ |
|
fprintf(stderr, "test_convolutiondepthwise_int8 failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d group=%d requant=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, group, requant, activation_type, activation_params[0], activation_params[1]); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int test_convolutiondepthwise_1() |
|
{ |
|
static const int kdsp[16][4] = { |
|
{1, 1, 1, 0}, |
|
{1, 1, 2, 0}, |
|
{2, 1, 1, 1}, |
|
{2, 1, 2, -233}, |
|
{3, 1, 1, 1}, |
|
{3, 1, 2, 1}, |
|
{3, 2, 1, 1}, |
|
{4, 1, 1, 2}, |
|
{4, 1, 2, -233}, |
|
{4, 2, 1, -234}, |
|
{5, 1, 1, -234}, |
|
{5, 1, 2, 2}, |
|
{5, 2, 2, 2}, |
|
{7, 1, 1, 3}, |
|
{7, 1, 2, 3}, |
|
{7, 2, 1, -233}, |
|
}; |
|
|
|
for (int i = 0; i < 16; i++) |
|
{ |
|
const int k = kdsp[i][0]; |
|
const int d = kdsp[i][1]; |
|
const int s = kdsp[i][2]; |
|
const int p = kdsp[i][3]; |
|
|
|
int ret = 0 |
|
|| test_convolutiondepthwise_int8(15, 7, 1, 1, k, d, s, p, 1, 1) |
|
|| test_convolutiondepthwise_int8(15, 7, 2, 2, k, d, s, p, 0, 1) |
|
|| test_convolutiondepthwise_int8(15, 7, 2, 2, k, d, s, p, 1, 2) |
|
|| test_convolutiondepthwise_int8(15, 7, 3, 3, k, d, s, p, 0, 3) |
|
|| test_convolutiondepthwise_int8(15, 7, 4, 2, k, d, s, p, 1, 2) |
|
|| test_convolutiondepthwise_int8(15, 7, 4, 4, k, d, s, p, 0, 4) |
|
|| test_convolutiondepthwise_int8(15, 7, 7, 7, k, d, s, p, 1, 7) |
|
|| test_convolutiondepthwise_int8(15, 7, 8, 8, k, d, s, p, 0, 2) |
|
|| test_convolutiondepthwise_int8(15, 7, 8, 8, k, d, s, p, 1, 8) |
|
|| test_convolutiondepthwise_int8(15, 7, 12, 12, k, d, s, p, 0, 4) |
|
|| test_convolutiondepthwise_int8(15, 7, 15, 15, k, d, s, p, 1, 15) |
|
|| test_convolutiondepthwise_int8(15, 7, 16, 8, k, d, s, p, 0, 2) |
|
|| test_convolutiondepthwise_int8(15, 7, 16, 16, k, d, s, p, 1, 16); |
|
|
|
if (ret != 0) |
|
return -1; |
|
} |
|
|
|
for (int i = 0; i < 16; i++) |
|
{ |
|
const int k = kdsp[i][0]; |
|
const int d = kdsp[i][1]; |
|
const int s = kdsp[i][2]; |
|
const int p = kdsp[i][3]; |
|
|
|
int ret = 0 |
|
|| test_convolutiondepthwise_int8(9, 7, 1, 1, k, d, s, p, 1, 1, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 2, 2, k, d, s, p, 0, 1, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 2, 2, k, d, s, p, 1, 2, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 3, 3, k, d, s, p, 0, 3, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 4, 2, k, d, s, p, 1, 2, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 4, 4, k, d, s, p, 0, 4, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 7, 7, k, d, s, p, 1, 7, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 8, 8, k, d, s, p, 0, 2, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 8, 8, k, d, s, p, 1, 8, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 12, 12, k, d, s, p, 0, 4, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 15, 15, k, d, s, p, 1, 15, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 16, 8, k, d, s, p, 0, 2, true) |
|
|| test_convolutiondepthwise_int8(9, 7, 16, 16, k, d, s, p, 1, 16, true); |
|
|
|
if (ret != 0) |
|
return -1; |
|
} |
|
|
|
return 0; |
|
} |
|
#endif |
|
|
|
int main() |
|
{ |
|
SRAND(7767517); |
|
|
|
#if NCNN_INT8 |
|
return test_convolutiondepthwise_1() || test_convolutiondepthwise_2(); |
|
#else |
|
return test_convolutiondepthwise_2(); |
|
#endif |
|
} |
|
|