|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "layer.h" |
|
#include "net.h" |
|
|
|
#if defined(USE_NCNN_SIMPLEOCV) |
|
#include "simpleocv.h" |
|
#else |
|
#include <opencv2/core/core.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
#include <opencv2/imgproc/imgproc.hpp> |
|
#endif |
|
#include <float.h> |
|
#include <stdio.h> |
|
#include <vector> |
|
|
|
struct Object |
|
{ |
|
cv::Rect_<float> rect; |
|
int label; |
|
float prob; |
|
}; |
|
|
|
static inline float intersection_area(const Object& a, const Object& b) |
|
{ |
|
cv::Rect_<float> inter = a.rect & b.rect; |
|
return inter.area(); |
|
} |
|
|
|
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) |
|
{ |
|
int i = left; |
|
int j = right; |
|
float p = faceobjects[(left + right) / 2].prob; |
|
|
|
while (i <= j) |
|
{ |
|
while (faceobjects[i].prob > p) |
|
i++; |
|
|
|
while (faceobjects[j].prob < p) |
|
j--; |
|
|
|
if (i <= j) |
|
{ |
|
|
|
std::swap(faceobjects[i], faceobjects[j]); |
|
|
|
i++; |
|
j--; |
|
} |
|
} |
|
|
|
#pragma omp parallel sections |
|
{ |
|
#pragma omp section |
|
{ |
|
if (left < j) qsort_descent_inplace(faceobjects, left, j); |
|
} |
|
#pragma omp section |
|
{ |
|
if (i < right) qsort_descent_inplace(faceobjects, i, right); |
|
} |
|
} |
|
} |
|
|
|
static void qsort_descent_inplace(std::vector<Object>& faceobjects) |
|
{ |
|
if (faceobjects.empty()) |
|
return; |
|
|
|
qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1); |
|
} |
|
|
|
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false) |
|
{ |
|
picked.clear(); |
|
|
|
const int n = faceobjects.size(); |
|
|
|
std::vector<float> areas(n); |
|
for (int i = 0; i < n; i++) |
|
{ |
|
areas[i] = faceobjects[i].rect.area(); |
|
} |
|
|
|
for (int i = 0; i < n; i++) |
|
{ |
|
const Object& a = faceobjects[i]; |
|
|
|
int keep = 1; |
|
for (int j = 0; j < (int)picked.size(); j++) |
|
{ |
|
const Object& b = faceobjects[picked[j]]; |
|
|
|
if (!agnostic && a.label != b.label) |
|
continue; |
|
|
|
|
|
float inter_area = intersection_area(a, b); |
|
float union_area = areas[i] + areas[picked[j]] - inter_area; |
|
|
|
if (inter_area / union_area > nms_threshold) |
|
keep = 0; |
|
} |
|
|
|
if (keep) |
|
picked.push_back(i); |
|
} |
|
} |
|
|
|
static inline float sigmoid(float x) |
|
{ |
|
return static_cast<float>(1.f / (1.f + exp(-x))); |
|
} |
|
|
|
static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects) |
|
{ |
|
const int num_grid_x = feat_blob.w; |
|
const int num_grid_y = feat_blob.h; |
|
|
|
const int num_anchors = anchors.w / 2; |
|
|
|
const int num_class = 80; |
|
|
|
for (int q = 0; q < num_anchors; q++) |
|
{ |
|
const float anchor_w = anchors[q * 2]; |
|
const float anchor_h = anchors[q * 2 + 1]; |
|
|
|
for (int i = 0; i < num_grid_y; i++) |
|
{ |
|
for (int j = 0; j < num_grid_x; j++) |
|
{ |
|
|
|
int class_index = 0; |
|
float class_score = -FLT_MAX; |
|
for (int k = 0; k < num_class; k++) |
|
{ |
|
float score = feat_blob.channel(q * 85 + 5 + k).row(i)[j]; |
|
if (score > class_score) |
|
{ |
|
class_index = k; |
|
class_score = score; |
|
} |
|
} |
|
|
|
float box_score = feat_blob.channel(q * 85 + 4).row(i)[j]; |
|
|
|
float confidence = sigmoid(box_score) * sigmoid(class_score); |
|
|
|
if (confidence >= prob_threshold) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
float dx = sigmoid(feat_blob.channel(q * 85 + 0).row(i)[j]); |
|
float dy = sigmoid(feat_blob.channel(q * 85 + 1).row(i)[j]); |
|
float dw = sigmoid(feat_blob.channel(q * 85 + 2).row(i)[j]); |
|
float dh = sigmoid(feat_blob.channel(q * 85 + 3).row(i)[j]); |
|
|
|
float pb_cx = (dx * 2.f - 0.5f + j) * stride; |
|
float pb_cy = (dy * 2.f - 0.5f + i) * stride; |
|
|
|
float pb_w = pow(dw * 2.f, 2) * anchor_w; |
|
float pb_h = pow(dh * 2.f, 2) * anchor_h; |
|
|
|
float x0 = pb_cx - pb_w * 0.5f; |
|
float y0 = pb_cy - pb_h * 0.5f; |
|
float x1 = pb_cx + pb_w * 0.5f; |
|
float y1 = pb_cy + pb_h * 0.5f; |
|
|
|
Object obj; |
|
obj.rect.x = x0; |
|
obj.rect.y = y0; |
|
obj.rect.width = x1 - x0; |
|
obj.rect.height = y1 - y0; |
|
obj.label = class_index; |
|
obj.prob = confidence; |
|
|
|
objects.push_back(obj); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static int detect_yolov7(const cv::Mat& bgr, std::vector<Object>& objects) |
|
{ |
|
ncnn::Net yolov7; |
|
|
|
yolov7.opt.use_vulkan_compute = true; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yolov7.load_param("yolov7.param"); |
|
yolov7.load_model("yolov7.bin"); |
|
|
|
const int target_size = 640; |
|
const float prob_threshold = 0.25f; |
|
const float nms_threshold = 0.45f; |
|
|
|
int img_w = bgr.cols; |
|
int img_h = bgr.rows; |
|
|
|
|
|
const int max_stride = 64; |
|
|
|
|
|
int w = img_w; |
|
int h = img_h; |
|
float scale = 1.f; |
|
if (w > h) |
|
{ |
|
scale = (float)target_size / w; |
|
w = target_size; |
|
h = h * scale; |
|
} |
|
else |
|
{ |
|
scale = (float)target_size / h; |
|
h = target_size; |
|
w = w * scale; |
|
} |
|
|
|
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h); |
|
|
|
|
|
|
|
int wpad = (w + max_stride - 1) / max_stride * max_stride - w; |
|
int hpad = (h + max_stride - 1) / max_stride * max_stride - h; |
|
ncnn::Mat in_pad; |
|
ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f); |
|
|
|
const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f}; |
|
in_pad.substract_mean_normalize(0, norm_vals); |
|
|
|
ncnn::Extractor ex = yolov7.create_extractor(); |
|
|
|
ex.input("in0", in_pad); |
|
|
|
std::vector<Object> proposals; |
|
|
|
|
|
|
|
|
|
{ |
|
ncnn::Mat out; |
|
ex.extract("out0", out); |
|
|
|
ncnn::Mat anchors(6); |
|
anchors[0] = 12.f; |
|
anchors[1] = 16.f; |
|
anchors[2] = 19.f; |
|
anchors[3] = 36.f; |
|
anchors[4] = 40.f; |
|
anchors[5] = 28.f; |
|
|
|
std::vector<Object> objects8; |
|
generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8); |
|
|
|
proposals.insert(proposals.end(), objects8.begin(), objects8.end()); |
|
} |
|
|
|
|
|
{ |
|
ncnn::Mat out; |
|
ex.extract("out1", out); |
|
|
|
ncnn::Mat anchors(6); |
|
anchors[0] = 36.f; |
|
anchors[1] = 75.f; |
|
anchors[2] = 76.f; |
|
anchors[3] = 55.f; |
|
anchors[4] = 72.f; |
|
anchors[5] = 146.f; |
|
|
|
std::vector<Object> objects16; |
|
generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16); |
|
|
|
proposals.insert(proposals.end(), objects16.begin(), objects16.end()); |
|
} |
|
|
|
|
|
{ |
|
ncnn::Mat out; |
|
ex.extract("out2", out); |
|
|
|
ncnn::Mat anchors(6); |
|
anchors[0] = 142.f; |
|
anchors[1] = 110.f; |
|
anchors[2] = 192.f; |
|
anchors[3] = 243.f; |
|
anchors[4] = 459.f; |
|
anchors[5] = 401.f; |
|
|
|
std::vector<Object> objects32; |
|
generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32); |
|
|
|
proposals.insert(proposals.end(), objects32.begin(), objects32.end()); |
|
} |
|
|
|
|
|
qsort_descent_inplace(proposals); |
|
|
|
|
|
std::vector<int> picked; |
|
nms_sorted_bboxes(proposals, picked, nms_threshold); |
|
|
|
int count = picked.size(); |
|
|
|
objects.resize(count); |
|
for (int i = 0; i < count; i++) |
|
{ |
|
objects[i] = proposals[picked[i]]; |
|
|
|
|
|
float x0 = (objects[i].rect.x - (wpad / 2)) / scale; |
|
float y0 = (objects[i].rect.y - (hpad / 2)) / scale; |
|
float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale; |
|
float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale; |
|
|
|
|
|
x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); |
|
y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); |
|
x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); |
|
y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); |
|
|
|
objects[i].rect.x = x0; |
|
objects[i].rect.y = y0; |
|
objects[i].rect.width = x1 - x0; |
|
objects[i].rect.height = y1 - y0; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects) |
|
{ |
|
static const char* class_names[] = { |
|
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", |
|
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", |
|
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", |
|
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", |
|
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", |
|
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", |
|
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", |
|
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", |
|
"hair drier", "toothbrush" |
|
}; |
|
|
|
cv::Mat image = bgr.clone(); |
|
|
|
for (size_t i = 0; i < objects.size(); i++) |
|
{ |
|
const Object& obj = objects[i]; |
|
|
|
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, |
|
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); |
|
|
|
cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0)); |
|
|
|
char text[256]; |
|
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); |
|
|
|
int baseLine = 0; |
|
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
|
|
int x = obj.rect.x; |
|
int y = obj.rect.y - label_size.height - baseLine; |
|
if (y < 0) |
|
y = 0; |
|
if (x + label_size.width > image.cols) |
|
x = image.cols - label_size.width; |
|
|
|
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), |
|
cv::Scalar(255, 255, 255), -1); |
|
|
|
cv::putText(image, text, cv::Point(x, y + label_size.height), |
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); |
|
} |
|
|
|
cv::imshow("image", image); |
|
cv::waitKey(0); |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
if (argc != 2) |
|
{ |
|
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); |
|
return -1; |
|
} |
|
|
|
const char* imagepath = argv[1]; |
|
|
|
cv::Mat m = cv::imread(imagepath, 1); |
|
if (m.empty()) |
|
{ |
|
fprintf(stderr, "cv::imread %s failed\n", imagepath); |
|
return -1; |
|
} |
|
|
|
std::vector<Object> objects; |
|
detect_yolov7(m, objects); |
|
|
|
draw_objects(m, objects); |
|
|
|
return 0; |
|
} |
|
|