|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "net.h" |
|
#if defined(USE_NCNN_SIMPLEOCV) |
|
#include "simpleocv.h" |
|
#else |
|
#include <opencv2/core/core.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
#include <opencv2/imgproc/imgproc.hpp> |
|
#endif |
|
#include <stdlib.h> |
|
#include <float.h> |
|
#include <stdio.h> |
|
#include <vector> |
|
|
|
struct CrowdPoint |
|
{ |
|
cv::Point pt; |
|
float prob; |
|
}; |
|
|
|
static void shift(int w, int h, int stride, std::vector<float> anchor_points, std::vector<float>& shifted_anchor_points) |
|
{ |
|
std::vector<float> x_, y_; |
|
for (int i = 0; i < w; i++) |
|
{ |
|
float x = (i + 0.5) * stride; |
|
x_.push_back(x); |
|
} |
|
for (int i = 0; i < h; i++) |
|
{ |
|
float y = (i + 0.5) * stride; |
|
y_.push_back(y); |
|
} |
|
|
|
std::vector<float> shift_x((size_t)w * h, 0), shift_y((size_t)w * h, 0); |
|
for (int i = 0; i < h; i++) |
|
{ |
|
for (int j = 0; j < w; j++) |
|
{ |
|
shift_x[i * w + j] = x_[j]; |
|
} |
|
} |
|
for (int i = 0; i < h; i++) |
|
{ |
|
for (int j = 0; j < w; j++) |
|
{ |
|
shift_y[i * w + j] = y_[i]; |
|
} |
|
} |
|
|
|
std::vector<float> shifts((size_t)w * h * 2, 0); |
|
for (int i = 0; i < w * h; i++) |
|
{ |
|
shifts[i * 2] = shift_x[i]; |
|
shifts[i * 2 + 1] = shift_y[i]; |
|
} |
|
|
|
shifted_anchor_points.resize((size_t)2 * w * h * anchor_points.size() / 2, 0); |
|
for (int i = 0; i < w * h; i++) |
|
{ |
|
for (int j = 0; j < anchor_points.size() / 2; j++) |
|
{ |
|
float x = anchor_points[j * 2] + shifts[i * 2]; |
|
float y = anchor_points[j * 2 + 1] + shifts[i * 2 + 1]; |
|
shifted_anchor_points[i * anchor_points.size() / 2 * 2 + j * 2] = x; |
|
shifted_anchor_points[i * anchor_points.size() / 2 * 2 + j * 2 + 1] = y; |
|
} |
|
} |
|
} |
|
static void generate_anchor_points(int stride, int row, int line, std::vector<float>& anchor_points) |
|
{ |
|
float row_step = (float)stride / row; |
|
float line_step = (float)stride / line; |
|
|
|
std::vector<float> x_, y_; |
|
for (int i = 1; i < line + 1; i++) |
|
{ |
|
float x = (i - 0.5) * line_step - stride / 2; |
|
x_.push_back(x); |
|
} |
|
for (int i = 1; i < row + 1; i++) |
|
{ |
|
float y = (i - 0.5) * row_step - stride / 2; |
|
y_.push_back(y); |
|
} |
|
std::vector<float> shift_x((size_t)row * line, 0), shift_y((size_t)row * line, 0); |
|
for (int i = 0; i < row; i++) |
|
{ |
|
for (int j = 0; j < line; j++) |
|
{ |
|
shift_x[i * line + j] = x_[j]; |
|
} |
|
} |
|
for (int i = 0; i < row; i++) |
|
{ |
|
for (int j = 0; j < line; j++) |
|
{ |
|
shift_y[i * line + j] = y_[i]; |
|
} |
|
} |
|
anchor_points.resize((size_t)row * line * 2, 0); |
|
for (int i = 0; i < row * line; i++) |
|
{ |
|
float x = shift_x[i]; |
|
float y = shift_y[i]; |
|
anchor_points[i * 2] = x; |
|
anchor_points[i * 2 + 1] = y; |
|
} |
|
} |
|
static void generate_anchor_points(int img_w, int img_h, std::vector<int> pyramid_levels, int row, int line, std::vector<float>& all_anchor_points) |
|
{ |
|
std::vector<std::pair<int, int> > image_shapes; |
|
std::vector<int> strides; |
|
for (int i = 0; i < pyramid_levels.size(); i++) |
|
{ |
|
int new_h = std::floor((img_h + std::pow(2, pyramid_levels[i]) - 1) / std::pow(2, pyramid_levels[i])); |
|
int new_w = std::floor((img_w + std::pow(2, pyramid_levels[i]) - 1) / std::pow(2, pyramid_levels[i])); |
|
image_shapes.push_back(std::make_pair(new_w, new_h)); |
|
strides.push_back(std::pow(2, pyramid_levels[i])); |
|
} |
|
|
|
all_anchor_points.clear(); |
|
for (int i = 0; i < pyramid_levels.size(); i++) |
|
{ |
|
std::vector<float> anchor_points; |
|
generate_anchor_points(std::pow(2, pyramid_levels[i]), row, line, anchor_points); |
|
std::vector<float> shifted_anchor_points; |
|
shift(image_shapes[i].first, image_shapes[i].second, strides[i], anchor_points, shifted_anchor_points); |
|
all_anchor_points.insert(all_anchor_points.end(), shifted_anchor_points.begin(), shifted_anchor_points.end()); |
|
} |
|
} |
|
|
|
static int detect_crowd(const cv::Mat& bgr, std::vector<CrowdPoint>& crowd_points) |
|
{ |
|
ncnn::Option opt; |
|
opt.num_threads = 4; |
|
opt.use_vulkan_compute = false; |
|
opt.use_bf16_storage = false; |
|
|
|
ncnn::Net net; |
|
net.opt = opt; |
|
|
|
|
|
|
|
|
|
if (net.load_param("p2pnet.param")) |
|
exit(-1); |
|
if (net.load_model("p2pnet.bin")) |
|
exit(-1); |
|
|
|
int width = bgr.cols; |
|
int height = bgr.rows; |
|
|
|
int new_width = width / 128 * 128; |
|
int new_height = height / 128 * 128; |
|
|
|
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, width, height, new_width, new_height); |
|
|
|
std::vector<int> pyramid_levels(1, 3); |
|
std::vector<float> all_anchor_points; |
|
generate_anchor_points(in.w, in.h, pyramid_levels, 2, 2, all_anchor_points); |
|
|
|
ncnn::Mat anchor_points = ncnn::Mat(2, all_anchor_points.size() / 2, all_anchor_points.data()); |
|
|
|
ncnn::Extractor ex = net.create_extractor(); |
|
const float mean_vals1[3] = {123.675f, 116.28f, 103.53f}; |
|
const float norm_vals1[3] = {0.01712475f, 0.0175f, 0.01742919f}; |
|
|
|
in.substract_mean_normalize(mean_vals1, norm_vals1); |
|
|
|
ex.input("input", in); |
|
ex.input("anchor", anchor_points); |
|
|
|
ncnn::Mat score, points; |
|
ex.extract("pred_scores", score); |
|
ex.extract("pred_points", points); |
|
|
|
for (int i = 0; i < points.h; i++) |
|
{ |
|
float* score_data = score.row(i); |
|
float* points_data = points.row(i); |
|
CrowdPoint cp; |
|
int x = points_data[0] / new_width * width; |
|
int y = points_data[1] / new_height * height; |
|
cp.pt = cv::Point(x, y); |
|
cp.prob = score_data[1]; |
|
crowd_points.push_back(cp); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void draw_result(const cv::Mat& bgr, const std::vector<CrowdPoint>& crowd_points) |
|
{ |
|
cv::Mat image = bgr.clone(); |
|
const float threshold = 0.5f; |
|
for (int i = 0; i < crowd_points.size(); i++) |
|
{ |
|
if (crowd_points[i].prob > threshold) |
|
{ |
|
cv::circle(image, crowd_points[i].pt, 4, cv::Scalar(0, 0, 255), -1, 8, 0); |
|
} |
|
} |
|
cv::imshow("image", image); |
|
cv::waitKey(); |
|
} |
|
int main(int argc, char** argv) |
|
{ |
|
if (argc != 2) |
|
{ |
|
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); |
|
return -1; |
|
} |
|
|
|
const char* imagepath = argv[1]; |
|
|
|
cv::Mat bgr = cv::imread(imagepath, 1); |
|
if (bgr.empty()) |
|
{ |
|
fprintf(stderr, "cv::imread %s failed\n", imagepath); |
|
return -1; |
|
} |
|
|
|
std::vector<CrowdPoint> crowd_points; |
|
detect_crowd(bgr, crowd_points); |
|
draw_result(bgr, crowd_points); |
|
|
|
return 0; |
|
} |
|
|