camenduru commited on
Commit
e6a45f8
1 Parent(s): f979e8c

thanks to naver ❤

Browse files
MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e28f91b488554653e2b46ddae9c78c1143e0bcb2e27d3e26cdb0b717f1568eb2
3
+ size 2754910614
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-to-3d
4
+ - pytorch_model_hub_mixin
5
+ - model_hub_mixin
6
+ library_name: mast3r
7
+ repo_url: https://github.com/naver/mast3r
8
+ ---
9
+
10
+
11
+ ## Grounding Image Matching in 3D with MASt3R
12
+
13
+ ```bibtex
14
+ @misc{mast3r_arxiv24,
15
+ title={Grounding Image Matching in 3D with MASt3R},
16
+ author={Vincent Leroy and Yohann Cabon and Jerome Revaud},
17
+ year={2024},
18
+ eprint={2406.09756},
19
+ archivePrefix={arXiv},
20
+ primaryClass={cs.CV}
21
+ }
22
+
23
+ @inproceedings{dust3r_cvpr24,
24
+ title={DUSt3R: Geometric 3D Vision Made Easy},
25
+ author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
26
+ booktitle = {CVPR},
27
+ year = {2024}
28
+ }
29
+ ```
30
+
31
+ # License
32
+ The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](https://github.com/naver/mast3r/blob/main/LICENSE) for more information.
33
+ For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0.
34
+ The mapfree dataset license in particular is very restrictive. For more information, check [CHECKPOINTS_NOTICE](https://github.com/naver/mast3r/blob/main/CHECKPOINTS_NOTICE).
35
+
36
+ # Model info
37
+
38
+ Gihub page: https://github.com/naver/mast3r/
39
+
40
+ | Modelname | Training resolutions | Head | Encoder | Decoder |
41
+ |-------------|----------------------|------|---------|---------|
42
+ | MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_nonmetric | 512x384, 512x336, 512x288, 512x256, 512x160 | CatMLP+DPT | ViT-L | ViT-B |
43
+
44
+ # How to use
45
+
46
+ First, [install mast3r](https://github.com/naver/mast3r?tab=readme-ov-file#installation).
47
+ To load the model:
48
+
49
+ ```python
50
+ from mast3r.model import AsymmetricMASt3R
51
+ import torch
52
+
53
+ model = AsymmetricMASt3R.from_pretrained("naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_nonmetric")
54
+
55
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
56
+ model.to(device)
57
+ ```
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "conf_mode": [
3
+ "exp",
4
+ 1,
5
+ Infinity
6
+ ],
7
+ "dec_depth": 12,
8
+ "dec_embed_dim": 768,
9
+ "dec_num_heads": 12,
10
+ "depth_mode": [
11
+ "exp",
12
+ -Infinity,
13
+ Infinity
14
+ ],
15
+ "desc_conf_mode": [
16
+ "exp",
17
+ 0,
18
+ Infinity
19
+ ],
20
+ "desc_mode": "norm",
21
+ "enc_depth": 24,
22
+ "enc_embed_dim": 1024,
23
+ "enc_num_heads": 16,
24
+ "head_type": "catmlp+dpt",
25
+ "img_size": [
26
+ 512,
27
+ 512
28
+ ],
29
+ "landscape_only": false,
30
+ "output_mode": "pts3d+desc24",
31
+ "patch_embed_cls": "PatchEmbedDust3R",
32
+ "pos_embed": "RoPE100",
33
+ "two_confs": true
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a615eb05fa9db654050aa655945ee5696e7c6c1b7f93f1ee8c37249010f6feb
3
+ size 2754661648