ceres-solver / include /colmap /base /similarity_transform.h
camenduru's picture
ceres-solver and colmap
2b5a2b6
// Copyright (c) 2022, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
#ifndef COLMAP_SRC_BASE_SIMILARITY_TRANSFORM_H_
#define COLMAP_SRC_BASE_SIMILARITY_TRANSFORM_H_
#include <vector>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include "estimators/similarity_transform.h"
#include "util/alignment.h"
#include "util/types.h"
namespace colmap {
struct RANSACOptions;
class Reconstruction;
// 3D similarity transformation with 7 degrees of freedom.
class SimilarityTransform3 {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
SimilarityTransform3();
explicit SimilarityTransform3(const Eigen::Matrix3x4d& matrix);
explicit SimilarityTransform3(
const Eigen::Transform<double, 3, Eigen::Affine>& transform);
SimilarityTransform3(const double scale, const Eigen::Vector4d& qvec,
const Eigen::Vector3d& tvec);
void Write(const std::string& path);
template <bool kEstimateScale = true>
bool Estimate(const std::vector<Eigen::Vector3d>& src,
const std::vector<Eigen::Vector3d>& dst);
SimilarityTransform3 Inverse() const;
void TransformPoint(Eigen::Vector3d* xyz) const;
void TransformPose(Eigen::Vector4d* qvec, Eigen::Vector3d* tvec) const;
Eigen::Matrix4d Matrix() const;
double Scale() const;
Eigen::Vector4d Rotation() const;
Eigen::Vector3d Translation() const;
static SimilarityTransform3 FromFile(const std::string& path);
private:
Eigen::Transform<double, 3, Eigen::Affine> transform_;
};
// Robustly compute alignment between reconstructions by finding images that
// are registered in both reconstructions. The alignment is then estimated
// robustly inside RANSAC from corresponding projection centers. An alignment
// is verified by reprojecting common 3D point observations.
// The min_inlier_observations threshold determines how many observations
// in a common image must reproject within the given threshold.
bool ComputeAlignmentBetweenReconstructions(
const Reconstruction& src_reconstruction,
const Reconstruction& ref_reconstruction,
const double min_inlier_observations, const double max_reproj_error,
Eigen::Matrix3x4d* alignment);
////////////////////////////////////////////////////////////////////////////////
// Implementation
////////////////////////////////////////////////////////////////////////////////
template <bool kEstimateScale>
bool SimilarityTransform3::Estimate(const std::vector<Eigen::Vector3d>& src,
const std::vector<Eigen::Vector3d>& dst) {
const auto results =
SimilarityTransformEstimator<3, kEstimateScale>().Estimate(src, dst);
if (results.empty()) {
return false;
}
CHECK_EQ(results.size(), 1);
transform_.matrix().topLeftCorner<3, 4>() = results[0];
return true;
}
} // namespace colmap
EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION_CUSTOM(colmap::SimilarityTransform3)
#endif // COLMAP_SRC_BASE_SIMILARITY_TRANSFORM_H_