// Copyright (c) 2022, ETH Zurich and UNC Chapel Hill. | |
// All rights reserved. | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// | |
// * Redistributions in binary form must reproduce the above copyright | |
// notice, this list of conditions and the following disclaimer in the | |
// documentation and/or other materials provided with the distribution. | |
// | |
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of | |
// its contributors may be used to endorse or promote products derived | |
// from this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de) | |
namespace colmap { | |
// All polynomials are assumed to be the form: | |
// | |
// sum_{i=0}^N polynomial(i) x^{N-i}. | |
// | |
// and are given by a vector of coefficients of size N + 1. | |
// | |
// The implementation is based on COLMAP's old polynomial functionality and is | |
// inspired by Ceres-Solver's/Theia's implementation to support complex | |
// polynomials. The companion matrix implementation is based on NumPy. | |
// Evaluate the polynomial for the given coefficients at x using the Horner | |
// scheme. This function is templated such that the polynomial may be evaluated | |
// at real and/or imaginary points. | |
template <typename T> | |
T EvaluatePolynomial(const Eigen::VectorXd& coeffs, const T& x); | |
// Find the root of polynomials of the form: a * x + b = 0. | |
// The real and/or imaginary variable may be NULL if the output is not needed. | |
bool FindLinearPolynomialRoots(const Eigen::VectorXd& coeffs, | |
Eigen::VectorXd* real, Eigen::VectorXd* imag); | |
// Find the roots of polynomials of the form: a * x^2 + b * x + c = 0. | |
// The real and/or imaginary variable may be NULL if the output is not needed. | |
bool FindQuadraticPolynomialRoots(const Eigen::VectorXd& coeffs, | |
Eigen::VectorXd* real, Eigen::VectorXd* imag); | |
// Find the roots of a polynomial using the Durand-Kerner method, based on: | |
// | |
// https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method | |
// | |
// The Durand-Kerner is comparatively fast but often unstable/inaccurate. | |
// The real and/or imaginary variable may be NULL if the output is not needed. | |
bool FindPolynomialRootsDurandKerner(const Eigen::VectorXd& coeffs, | |
Eigen::VectorXd* real, | |
Eigen::VectorXd* imag); | |
// Find the roots of a polynomial using the companion matrix method, based on: | |
// | |
// R. A. Horn & C. R. Johnson, Matrix Analysis. Cambridge, | |
// UK: Cambridge University Press, 1999, pp. 146-7. | |
// | |
// Compared to Durand-Kerner, this method is slower but more stable/accurate. | |
// The real and/or imaginary variable may be NULL if the output is not needed. | |
bool FindPolynomialRootsCompanionMatrix(const Eigen::VectorXd& coeffs, | |
Eigen::VectorXd* real, | |
Eigen::VectorXd* imag); | |
//////////////////////////////////////////////////////////////////////////////// | |
// Implementation | |
//////////////////////////////////////////////////////////////////////////////// | |
template <typename T> | |
T EvaluatePolynomial(const Eigen::VectorXd& coeffs, const T& x) { | |
T value = 0.0; | |
for (Eigen::VectorXd::Index i = 0; i < coeffs.size(); ++i) { | |
value = value * x + coeffs(i); | |
} | |
return value; | |
} | |
} // namespace colmap | |