ceres-solver / include /colmap /base /essential_matrix.h
camenduru's picture
ceres-solver and colmap
2b5a2b6
// Copyright (c) 2022, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
#ifndef COLMAP_SRC_BASE_ESSENTIAL_MATRIX_H_
#define COLMAP_SRC_BASE_ESSENTIAL_MATRIX_H_
#include <vector>
#include <Eigen/Core>
#include <ceres/ceres.h>
#include "util/alignment.h"
#include "util/types.h"
namespace colmap {
// Decompose an essential matrix into the possible rotations and translations.
//
// The first pose is assumed to be P = [I | 0] and the set of four other
// possible second poses are defined as: {[R1 | t], [R2 | t],
// [R1 | -t], [R2 | -t]}
//
// @param E 3x3 essential matrix.
// @param R1 First possible 3x3 rotation matrix.
// @param R2 Second possible 3x3 rotation matrix.
// @param t 3x1 possible translation vector (also -t possible).
void DecomposeEssentialMatrix(const Eigen::Matrix3d& E, Eigen::Matrix3d* R1,
Eigen::Matrix3d* R2, Eigen::Vector3d* t);
// Recover the most probable pose from the given essential matrix.
//
// The pose of the first image is assumed to be P = [I | 0].
//
// @param E 3x3 essential matrix.
// @param points1 First set of corresponding points.
// @param points2 Second set of corresponding points.
// @param inlier_mask Only points with `true` in the inlier mask are
// considered in the cheirality test. Size of the
// inlier mask must match the number of points N.
// @param R Most probable 3x3 rotation matrix.
// @param t Most probable 3x1 translation vector.
// @param points3D Triangulated 3D points infront of camera.
void PoseFromEssentialMatrix(const Eigen::Matrix3d& E,
const std::vector<Eigen::Vector2d>& points1,
const std::vector<Eigen::Vector2d>& points2,
Eigen::Matrix3d* R, Eigen::Vector3d* t,
std::vector<Eigen::Vector3d>* points3D);
// Compose essential matrix from relative camera poses.
//
// Assumes that first camera pose has projection matrix P = [I | 0], and
// pose of second camera is given as transformation from world to camera system.
//
// @param R 3x3 rotation matrix.
// @param t 3x1 translation vector.
//
// @return 3x3 essential matrix.
Eigen::Matrix3d EssentialMatrixFromPose(const Eigen::Matrix3d& R,
const Eigen::Vector3d& t);
// Compose essential matrix from two absolute camera poses.
//
// @param proj_matrix1 3x4 projection matrix.
// @param proj_matrix2 3x4 projection matrix.
//
// @return 3x3 essential matrix.
Eigen::Matrix3d EssentialMatrixFromAbsolutePoses(
const Eigen::Matrix3x4d& proj_matrix1,
const Eigen::Matrix3x4d& proj_matrix2);
// Find optimal image points, such that:
//
// optimal_point1^t * E * optimal_point2 = 0
//
// as described in:
//
// Lindstrom, P., "Triangulation made easy",
// Computer Vision and Pattern Recognition (CVPR),
// 2010 IEEE Conference on , vol., no., pp.1554,1561, 13-18 June 2010
//
// @param E Essential or fundamental matrix.
// @param point1 Corresponding 2D point in first image.
// @param point2 Corresponding 2D point in second image.
// @param optimal_point1 Estimated optimal image point in the first image.
// @param optimal_point2 Estimated optimal image point in the second image.
void FindOptimalImageObservations(const Eigen::Matrix3d& E,
const Eigen::Vector2d& point1,
const Eigen::Vector2d& point2,
Eigen::Vector2d* optimal_point1,
Eigen::Vector2d* optimal_point2);
// Compute the location of the epipole in homogeneous coordinates.
//
// @param E 3x3 essential matrix.
// @param left_image If true, epipole in left image is computed,
// else in right image.
//
// @return Epipole in homogeneous coordinates.
Eigen::Vector3d EpipoleFromEssentialMatrix(const Eigen::Matrix3d& E,
const bool left_image);
// Invert the essential matrix, i.e. if the essential matrix E describes the
// transformation from camera A to B, the inverted essential matrix E' describes
// the transformation from camera B to A.
//
// @param E 3x3 essential matrix.
//
// @return Inverted essential matrix.
Eigen::Matrix3d InvertEssentialMatrix(const Eigen::Matrix3d& matrix);
// Refine essential matrix.
//
// Decomposes the essential matrix into rotation and translation components
// and refines the relative pose using the function `RefineRelativePose`.
//
// @param E 3x3 essential matrix.
// @param points1 First set of corresponding points.
// @param points2 Second set of corresponding points.
// @param inlier_mask Inlier mask for corresponding points.
// @param options Solver options.
//
// @return Flag indicating if solution is usable.
bool RefineEssentialMatrix(const ceres::Solver::Options& options,
const std::vector<Eigen::Vector2d>& points1,
const std::vector<Eigen::Vector2d>& points2,
const std::vector<char>& inlier_mask,
Eigen::Matrix3d* E);
} // namespace colmap
#endif // COLMAP_SRC_BASE_ESSENTIAL_MATRIX_H_