// Copyright (c) 2022, ETH Zurich and UNC Chapel Hill. | |
// All rights reserved. | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// | |
// * Redistributions in binary form must reproduce the above copyright | |
// notice, this list of conditions and the following disclaimer in the | |
// documentation and/or other materials provided with the distribution. | |
// | |
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of | |
// its contributors may be used to endorse or promote products derived | |
// from this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de) | |
namespace colmap { | |
// Decompose an essential matrix into the possible rotations and translations. | |
// | |
// The first pose is assumed to be P = [I | 0] and the set of four other | |
// possible second poses are defined as: {[R1 | t], [R2 | t], | |
// [R1 | -t], [R2 | -t]} | |
// | |
// @param E 3x3 essential matrix. | |
// @param R1 First possible 3x3 rotation matrix. | |
// @param R2 Second possible 3x3 rotation matrix. | |
// @param t 3x1 possible translation vector (also -t possible). | |
void DecomposeEssentialMatrix(const Eigen::Matrix3d& E, Eigen::Matrix3d* R1, | |
Eigen::Matrix3d* R2, Eigen::Vector3d* t); | |
// Recover the most probable pose from the given essential matrix. | |
// | |
// The pose of the first image is assumed to be P = [I | 0]. | |
// | |
// @param E 3x3 essential matrix. | |
// @param points1 First set of corresponding points. | |
// @param points2 Second set of corresponding points. | |
// @param inlier_mask Only points with `true` in the inlier mask are | |
// considered in the cheirality test. Size of the | |
// inlier mask must match the number of points N. | |
// @param R Most probable 3x3 rotation matrix. | |
// @param t Most probable 3x1 translation vector. | |
// @param points3D Triangulated 3D points infront of camera. | |
void PoseFromEssentialMatrix(const Eigen::Matrix3d& E, | |
const std::vector<Eigen::Vector2d>& points1, | |
const std::vector<Eigen::Vector2d>& points2, | |
Eigen::Matrix3d* R, Eigen::Vector3d* t, | |
std::vector<Eigen::Vector3d>* points3D); | |
// Compose essential matrix from relative camera poses. | |
// | |
// Assumes that first camera pose has projection matrix P = [I | 0], and | |
// pose of second camera is given as transformation from world to camera system. | |
// | |
// @param R 3x3 rotation matrix. | |
// @param t 3x1 translation vector. | |
// | |
// @return 3x3 essential matrix. | |
Eigen::Matrix3d EssentialMatrixFromPose(const Eigen::Matrix3d& R, | |
const Eigen::Vector3d& t); | |
// Compose essential matrix from two absolute camera poses. | |
// | |
// @param proj_matrix1 3x4 projection matrix. | |
// @param proj_matrix2 3x4 projection matrix. | |
// | |
// @return 3x3 essential matrix. | |
Eigen::Matrix3d EssentialMatrixFromAbsolutePoses( | |
const Eigen::Matrix3x4d& proj_matrix1, | |
const Eigen::Matrix3x4d& proj_matrix2); | |
// Find optimal image points, such that: | |
// | |
// optimal_point1^t * E * optimal_point2 = 0 | |
// | |
// as described in: | |
// | |
// Lindstrom, P., "Triangulation made easy", | |
// Computer Vision and Pattern Recognition (CVPR), | |
// 2010 IEEE Conference on , vol., no., pp.1554,1561, 13-18 June 2010 | |
// | |
// @param E Essential or fundamental matrix. | |
// @param point1 Corresponding 2D point in first image. | |
// @param point2 Corresponding 2D point in second image. | |
// @param optimal_point1 Estimated optimal image point in the first image. | |
// @param optimal_point2 Estimated optimal image point in the second image. | |
void FindOptimalImageObservations(const Eigen::Matrix3d& E, | |
const Eigen::Vector2d& point1, | |
const Eigen::Vector2d& point2, | |
Eigen::Vector2d* optimal_point1, | |
Eigen::Vector2d* optimal_point2); | |
// Compute the location of the epipole in homogeneous coordinates. | |
// | |
// @param E 3x3 essential matrix. | |
// @param left_image If true, epipole in left image is computed, | |
// else in right image. | |
// | |
// @return Epipole in homogeneous coordinates. | |
Eigen::Vector3d EpipoleFromEssentialMatrix(const Eigen::Matrix3d& E, | |
const bool left_image); | |
// Invert the essential matrix, i.e. if the essential matrix E describes the | |
// transformation from camera A to B, the inverted essential matrix E' describes | |
// the transformation from camera B to A. | |
// | |
// @param E 3x3 essential matrix. | |
// | |
// @return Inverted essential matrix. | |
Eigen::Matrix3d InvertEssentialMatrix(const Eigen::Matrix3d& matrix); | |
// Refine essential matrix. | |
// | |
// Decomposes the essential matrix into rotation and translation components | |
// and refines the relative pose using the function `RefineRelativePose`. | |
// | |
// @param E 3x3 essential matrix. | |
// @param points1 First set of corresponding points. | |
// @param points2 Second set of corresponding points. | |
// @param inlier_mask Inlier mask for corresponding points. | |
// @param options Solver options. | |
// | |
// @return Flag indicating if solution is usable. | |
bool RefineEssentialMatrix(const ceres::Solver::Options& options, | |
const std::vector<Eigen::Vector2d>& points1, | |
const std::vector<Eigen::Vector2d>& points2, | |
const std::vector<char>& inlier_mask, | |
Eigen::Matrix3d* E); | |
} // namespace colmap | |