// Ceres Solver - A fast non-linear least squares minimizer | |
// Copyright 2019 Google Inc. All rights reserved. | |
// http://ceres-solver.org/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// * Neither the name of Google Inc. nor the names of its contributors may be | |
// used to endorse or promote products derived from this software without | |
// specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: sameeragarwal@google.com (Sameer Agarwal) | |
namespace ceres { | |
// An adapter class that lets users of TinySolver use | |
// ceres::CostFunction objects that have exactly one parameter block. | |
// | |
// The adapter allows for the number of residuals and the size of the | |
// parameter block to be specified at compile or run-time. | |
// | |
// WARNING: This object is not thread-safe. | |
// | |
// Example usage: | |
// | |
// CostFunction* cost_function = ... | |
// | |
// Number of residuals and parameter block size known at compile time: | |
// | |
// TinySolverCostFunctionAdapter<kNumResiduals, kNumParameters> | |
// cost_function_adapter(*cost_function); | |
// | |
// Number of residuals known at compile time and the parameter block | |
// size not known at compile time. | |
// | |
// TinySolverCostFunctionAdapter<kNumResiduals, Eigen::Dynamic> | |
// cost_function_adapter(*cost_function); | |
// | |
// Number of residuals not known at compile time and the parameter | |
// block size known at compile time. | |
// | |
// TinySolverCostFunctionAdapter<Eigen::Dynamic, kParameterBlockSize> | |
// cost_function_adapter(*cost_function); | |
// | |
// Number of residuals not known at compile time and the parameter | |
// block size not known at compile time. | |
// | |
// TinySolverCostFunctionAdapter cost_function_adapter(*cost_function); | |
// | |
template <int kNumResiduals = Eigen::Dynamic, | |
int kNumParameters = Eigen::Dynamic> | |
class TinySolverCostFunctionAdapter { | |
public: | |
using Scalar = double; | |
enum ComponentSizeType { | |
NUM_PARAMETERS = kNumParameters, | |
NUM_RESIDUALS = kNumResiduals | |
}; | |
// This struct needs to have an Eigen aligned operator new as it contains | |
// fixed-size Eigen types. | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW | |
explicit TinySolverCostFunctionAdapter(const CostFunction& cost_function) | |
: cost_function_(cost_function) { | |
CHECK_EQ(cost_function_.parameter_block_sizes().size(), 1) | |
<< "Only CostFunctions with exactly one parameter blocks are allowed."; | |
const int parameter_block_size = cost_function_.parameter_block_sizes()[0]; | |
if (NUM_PARAMETERS == Eigen::Dynamic || NUM_RESIDUALS == Eigen::Dynamic) { | |
if (NUM_RESIDUALS != Eigen::Dynamic) { | |
CHECK_EQ(cost_function_.num_residuals(), NUM_RESIDUALS); | |
} | |
if (NUM_PARAMETERS != Eigen::Dynamic) { | |
CHECK_EQ(parameter_block_size, NUM_PARAMETERS); | |
} | |
row_major_jacobian_.resize(cost_function_.num_residuals(), | |
parameter_block_size); | |
} | |
} | |
bool operator()(const double* parameters, | |
double* residuals, | |
double* jacobian) const { | |
if (!jacobian) { | |
return cost_function_.Evaluate(¶meters, residuals, nullptr); | |
} | |
double* jacobians[1] = {row_major_jacobian_.data()}; | |
if (!cost_function_.Evaluate(¶meters, residuals, jacobians)) { | |
return false; | |
} | |
// The Function object used by TinySolver takes its Jacobian in a | |
// column-major layout, and the CostFunction objects use row-major | |
// Jacobian matrices. So the following bit of code does the | |
// conversion from row-major Jacobians to column-major Jacobians. | |
Eigen::Map<Eigen::Matrix<double, NUM_RESIDUALS, NUM_PARAMETERS>> | |
col_major_jacobian(jacobian, NumResiduals(), NumParameters()); | |
col_major_jacobian = row_major_jacobian_; | |
return true; | |
} | |
int NumResiduals() const { return cost_function_.num_residuals(); } | |
int NumParameters() const { | |
return cost_function_.parameter_block_sizes()[0]; | |
} | |
private: | |
const CostFunction& cost_function_; | |
mutable Eigen::Matrix<double, NUM_RESIDUALS, NUM_PARAMETERS, Eigen::RowMajor> | |
row_major_jacobian_; | |
}; | |
} // namespace ceres | |