// Ceres Solver - A fast non-linear least squares minimizer | |
// Copyright 2019 Google Inc. All rights reserved. | |
// http://ceres-solver.org/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// * Neither the name of Google Inc. nor the names of its contributors may be | |
// used to endorse or promote products derived from this software without | |
// specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: mierle@gmail.com (Keir Mierle) | |
// | |
// WARNING WARNING WARNING | |
// WARNING WARNING WARNING Tiny solver is experimental and will change. | |
// WARNING WARNING WARNING | |
namespace ceres { | |
// An adapter around autodiff-style CostFunctors to enable easier use of | |
// TinySolver. See the example below showing how to use it: | |
// | |
// // Example for cost functor with static residual size. | |
// // Same as an autodiff cost functor, but taking only 1 parameter. | |
// struct MyFunctor { | |
// template<typename T> | |
// bool operator()(const T* const parameters, T* residuals) const { | |
// const T& x = parameters[0]; | |
// const T& y = parameters[1]; | |
// const T& z = parameters[2]; | |
// residuals[0] = x + 2.*y + 4.*z; | |
// residuals[1] = y * z; | |
// return true; | |
// } | |
// }; | |
// | |
// typedef TinySolverAutoDiffFunction<MyFunctor, 2, 3> | |
// AutoDiffFunction; | |
// | |
// MyFunctor my_functor; | |
// AutoDiffFunction f(my_functor); | |
// | |
// Vec3 x = ...; | |
// TinySolver<AutoDiffFunction> solver; | |
// solver.Solve(f, &x); | |
// | |
// // Example for cost functor with dynamic residual size. | |
// // NumResiduals() supplies dynamic size of residuals. | |
// // Same functionality as in tiny_solver.h but with autodiff. | |
// struct MyFunctorWithDynamicResiduals { | |
// int NumResiduals() const { | |
// return 2; | |
// } | |
// | |
// template<typename T> | |
// bool operator()(const T* const parameters, T* residuals) const { | |
// const T& x = parameters[0]; | |
// const T& y = parameters[1]; | |
// const T& z = parameters[2]; | |
// residuals[0] = x + static_cast<T>(2.)*y + static_cast<T>(4.)*z; | |
// residuals[1] = y * z; | |
// return true; | |
// } | |
// }; | |
// | |
// typedef TinySolverAutoDiffFunction<MyFunctorWithDynamicResiduals, | |
// Eigen::Dynamic, | |
// 3> | |
// AutoDiffFunctionWithDynamicResiduals; | |
// | |
// MyFunctorWithDynamicResiduals my_functor_dyn; | |
// AutoDiffFunctionWithDynamicResiduals f(my_functor_dyn); | |
// | |
// Vec3 x = ...; | |
// TinySolver<AutoDiffFunctionWithDynamicResiduals> solver; | |
// solver.Solve(f, &x); | |
// | |
// WARNING: The cost function adapter is not thread safe. | |
template <typename CostFunctor, | |
int kNumResiduals, | |
int kNumParameters, | |
typename T = double> | |
class TinySolverAutoDiffFunction { | |
public: | |
// This class needs to have an Eigen aligned operator new as it contains | |
// as a member a Jet type, which itself has a fixed-size Eigen type as member. | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW | |
explicit TinySolverAutoDiffFunction(const CostFunctor& cost_functor) | |
: cost_functor_(cost_functor) { | |
Initialize<kNumResiduals>(cost_functor); | |
} | |
using Scalar = T; | |
enum { | |
NUM_PARAMETERS = kNumParameters, | |
NUM_RESIDUALS = kNumResiduals, | |
}; | |
// This is similar to AutoDifferentiate(), but since there is only one | |
// parameter block it is easier to inline to avoid overhead. | |
bool operator()(const T* parameters, T* residuals, T* jacobian) const { | |
if (jacobian == nullptr) { | |
// No jacobian requested, so just directly call the cost function with | |
// doubles, skipping jets and derivatives. | |
return cost_functor_(parameters, residuals); | |
} | |
// Initialize the input jets with passed parameters. | |
for (int i = 0; i < kNumParameters; ++i) { | |
jet_parameters_[i].a = parameters[i]; // Scalar part. | |
jet_parameters_[i].v.setZero(); // Derivative part. | |
jet_parameters_[i].v[i] = T(1.0); | |
} | |
// Initialize the output jets such that we can detect user errors. | |
for (int i = 0; i < num_residuals_; ++i) { | |
jet_residuals_[i].a = kImpossibleValue; | |
jet_residuals_[i].v.setConstant(kImpossibleValue); | |
} | |
// Execute the cost function, but with jets to find the derivative. | |
if (!cost_functor_(jet_parameters_, jet_residuals_.data())) { | |
return false; | |
} | |
// Copy the jacobian out of the derivative part of the residual jets. | |
Eigen::Map<Eigen::Matrix<T, kNumResiduals, kNumParameters>> jacobian_matrix( | |
jacobian, num_residuals_, kNumParameters); | |
for (int r = 0; r < num_residuals_; ++r) { | |
residuals[r] = jet_residuals_[r].a; | |
// Note that while this looks like a fast vectorized write, in practice it | |
// unfortunately thrashes the cache since the writes to the column-major | |
// jacobian are strided (e.g. rows are non-contiguous). | |
jacobian_matrix.row(r) = jet_residuals_[r].v; | |
} | |
return true; | |
} | |
int NumResiduals() const { | |
return num_residuals_; // Set by Initialize. | |
} | |
private: | |
const CostFunctor& cost_functor_; | |
// The number of residuals at runtime. | |
// This will be overriden if NUM_RESIDUALS == Eigen::Dynamic. | |
int num_residuals_ = kNumResiduals; | |
// To evaluate the cost function with jets, temporary storage is needed. These | |
// are the buffers that are used during evaluation; parameters for the input, | |
// and jet_residuals_ are where the final cost and derivatives end up. | |
// | |
// Since this buffer is used for evaluation, the adapter is not thread safe. | |
using JetType = Jet<T, kNumParameters>; | |
mutable JetType jet_parameters_[kNumParameters]; | |
// Eigen::Matrix serves as static or dynamic container. | |
mutable Eigen::Matrix<JetType, kNumResiduals, 1> jet_residuals_; | |
// The number of residuals is dynamically sized and the number of | |
// parameters is statically sized. | |
template <int R> | |
typename std::enable_if<(R == Eigen::Dynamic), void>::type Initialize( | |
const CostFunctor& function) { | |
jet_residuals_.resize(function.NumResiduals()); | |
num_residuals_ = function.NumResiduals(); | |
} | |
// The number of parameters and residuals are statically sized. | |
template <int R> | |
typename std::enable_if<(R != Eigen::Dynamic), void>::type Initialize( | |
const CostFunctor& /* function */) { | |
num_residuals_ = kNumResiduals; | |
} | |
}; | |
} // namespace ceres | |