// Ceres Solver - A fast non-linear least squares minimizer | |
// Copyright 2019 Google Inc. All rights reserved. | |
// http://ceres-solver.org/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// * Neither the name of Google Inc. nor the names of its contributors may be | |
// used to endorse or promote products derived from this software without | |
// specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: keir@google.com (Keir Mierle) | |
// sameeragarwal@google.com (Sameer Agarwal) | |
// | |
// Create CostFunctions as needed by the least squares framework with jacobians | |
// computed via numeric (a.k.a. finite) differentiation. For more details see | |
// http://en.wikipedia.org/wiki/Numerical_differentiation. | |
// | |
// To get an numerically differentiated cost function, you must define | |
// a class with a operator() (a functor) that computes the residuals. | |
// | |
// The function must write the computed value in the last argument | |
// (the only non-const one) and return true to indicate success. | |
// Please see cost_function.h for details on how the return value | |
// maybe used to impose simple constraints on the parameter block. | |
// | |
// For example, consider a scalar error e = k - x'y, where both x and y are | |
// two-dimensional column vector parameters, the prime sign indicates | |
// transposition, and k is a constant. The form of this error, which is the | |
// difference between a constant and an expression, is a common pattern in least | |
// squares problems. For example, the value x'y might be the model expectation | |
// for a series of measurements, where there is an instance of the cost function | |
// for each measurement k. | |
// | |
// The actual cost added to the total problem is e^2, or (k - x'k)^2; however, | |
// the squaring is implicitly done by the optimization framework. | |
// | |
// To write an numerically-differentiable cost function for the above model, | |
// first define the object | |
// | |
// class MyScalarCostFunctor { | |
// explicit MyScalarCostFunctor(double k): k_(k) {} | |
// | |
// bool operator()(const double* const x, | |
// const double* const y, | |
// double* residuals) const { | |
// residuals[0] = k_ - x[0] * y[0] - x[1] * y[1]; | |
// return true; | |
// } | |
// | |
// private: | |
// double k_; | |
// }; | |
// | |
// Note that in the declaration of operator() the input parameters x | |
// and y come first, and are passed as const pointers to arrays of | |
// doubles. If there were three input parameters, then the third input | |
// parameter would come after y. The output is always the last | |
// parameter, and is also a pointer to an array. In the example above, | |
// the residual is a scalar, so only residuals[0] is set. | |
// | |
// Then given this class definition, the numerically differentiated | |
// cost function with central differences used for computing the | |
// derivative can be constructed as follows. | |
// | |
// CostFunction* cost_function | |
// = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>( | |
// new MyScalarCostFunctor(1.0)); ^ ^ ^ ^ | |
// | | | | | |
// Finite Differencing Scheme -+ | | | | |
// Dimension of residual ------------+ | | | |
// Dimension of x ----------------------+ | | |
// Dimension of y -------------------------+ | |
// | |
// In this example, there is usually an instance for each measurement of k. | |
// | |
// In the instantiation above, the template parameters following | |
// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing | |
// a 1-dimensional output from two arguments, both 2-dimensional. | |
// | |
// NumericDiffCostFunction also supports cost functions with a | |
// runtime-determined number of residuals. For example: | |
// | |
// clang-format off | |
// | |
// CostFunction* cost_function | |
// = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>( | |
// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^ | |
// TAKE_OWNERSHIP, | | | | |
// runtime_number_of_residuals); <----+ | | | | |
// | | | | | |
// | | | | | |
// Actual number of residuals ------+ | | | | |
// Indicate dynamic number of residuals --------------------+ | | | |
// Dimension of x ------------------------------------------------+ | | |
// Dimension of y ---------------------------------------------------+ | |
// clang-format on | |
// | |
// | |
// The central difference method is considerably more accurate at the cost of | |
// twice as many function evaluations than forward difference. Consider using | |
// central differences begin with, and only after that works, trying forward | |
// difference to improve performance. | |
// | |
// WARNING #1: A common beginner's error when first using | |
// NumericDiffCostFunction is to get the sizing wrong. In particular, | |
// there is a tendency to set the template parameters to (dimension of | |
// residual, number of parameters) instead of passing a dimension | |
// parameter for *every parameter*. In the example above, that would | |
// be <MyScalarCostFunctor, 1, 2>, which is missing the last '2' | |
// argument. Please be careful when setting the size parameters. | |
// | |
//////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////////////////////////////////////////// | |
// | |
// ALTERNATE INTERFACE | |
// | |
// For a variety of reasons, including compatibility with legacy code, | |
// NumericDiffCostFunction can also take CostFunction objects as | |
// input. The following describes how. | |
// | |
// To get a numerically differentiated cost function, define a | |
// subclass of CostFunction such that the Evaluate() function ignores | |
// the jacobian parameter. The numeric differentiation wrapper will | |
// fill in the jacobian parameter if necessary by repeatedly calling | |
// the Evaluate() function with small changes to the appropriate | |
// parameters, and computing the slope. For performance, the numeric | |
// differentiation wrapper class is templated on the concrete cost | |
// function, even though it could be implemented only in terms of the | |
// virtual CostFunction interface. | |
// | |
// The numerically differentiated version of a cost function for a cost function | |
// can be constructed as follows: | |
// | |
// CostFunction* cost_function | |
// = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>( | |
// new MyCostFunction(...), TAKE_OWNERSHIP); | |
// | |
// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8 | |
// respectively. Look at the tests for a more detailed example. | |
// | |
// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives. | |
namespace ceres { | |
template <typename CostFunctor, | |
NumericDiffMethodType method = CENTRAL, | |
int kNumResiduals = 0, // Number of residuals, or ceres::DYNAMIC | |
int... Ns> // Parameters dimensions for each block. | |
class NumericDiffCostFunction final | |
: public SizedCostFunction<kNumResiduals, Ns...> { | |
public: | |
explicit NumericDiffCostFunction( | |
CostFunctor* functor, | |
Ownership ownership = TAKE_OWNERSHIP, | |
int num_residuals = kNumResiduals, | |
const NumericDiffOptions& options = NumericDiffOptions()) | |
: functor_(functor), ownership_(ownership), options_(options) { | |
if (kNumResiduals == DYNAMIC) { | |
SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals); | |
} | |
} | |
NumericDiffCostFunction(NumericDiffCostFunction&& other) | |
: functor_(std::move(other.functor_)), ownership_(other.ownership_) {} | |
virtual ~NumericDiffCostFunction() { | |
if (ownership_ != TAKE_OWNERSHIP) { | |
functor_.release(); | |
} | |
} | |
bool Evaluate(double const* const* parameters, | |
double* residuals, | |
double** jacobians) const override { | |
using internal::FixedArray; | |
using internal::NumericDiff; | |
using ParameterDims = | |
typename SizedCostFunction<kNumResiduals, Ns...>::ParameterDims; | |
constexpr int kNumParameters = ParameterDims::kNumParameters; | |
constexpr int kNumParameterBlocks = ParameterDims::kNumParameterBlocks; | |
// Get the function value (residuals) at the the point to evaluate. | |
if (!internal::VariadicEvaluate<ParameterDims>( | |
*functor_, parameters, residuals)) { | |
return false; | |
} | |
if (jacobians == nullptr) { | |
return true; | |
} | |
// Create a copy of the parameters which will get mutated. | |
FixedArray<double> parameters_copy(kNumParameters); | |
std::array<double*, kNumParameterBlocks> parameters_reference_copy = | |
ParameterDims::GetUnpackedParameters(parameters_copy.data()); | |
for (int block = 0; block < kNumParameterBlocks; ++block) { | |
memcpy(parameters_reference_copy[block], | |
parameters[block], | |
sizeof(double) * ParameterDims::GetDim(block)); | |
} | |
internal::EvaluateJacobianForParameterBlocks<ParameterDims>:: | |
template Apply<method, kNumResiduals>( | |
functor_.get(), | |
residuals, | |
options_, | |
SizedCostFunction<kNumResiduals, Ns...>::num_residuals(), | |
parameters_reference_copy.data(), | |
jacobians); | |
return true; | |
} | |
const CostFunctor& functor() const { return *functor_; } | |
private: | |
std::unique_ptr<CostFunctor> functor_; | |
Ownership ownership_; | |
NumericDiffOptions options_; | |
}; | |
} // namespace ceres | |