// Ceres Solver - A fast non-linear least squares minimizer | |
// Copyright 2022 Google Inc. All rights reserved. | |
// http://ceres-solver.org/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// * Neither the name of Google Inc. nor the names of its contributors may be | |
// used to endorse or promote products derived from this software without | |
// specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: keir@google.com (Keir Mierle) | |
// | |
// A simple implementation of N-dimensional dual numbers, for automatically | |
// computing exact derivatives of functions. | |
// | |
// While a complete treatment of the mechanics of automatic differentiation is | |
// beyond the scope of this header (see | |
// http://en.wikipedia.org/wiki/Automatic_differentiation for details), the | |
// basic idea is to extend normal arithmetic with an extra element, "e," often | |
// denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual | |
// numbers are extensions of the real numbers analogous to complex numbers: | |
// whereas complex numbers augment the reals by introducing an imaginary unit i | |
// such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such | |
// that e^2 = 0. Dual numbers have two components: the "real" component and the | |
// "infinitesimal" component, generally written as x + y*e. Surprisingly, this | |
// leads to a convenient method for computing exact derivatives without needing | |
// to manipulate complicated symbolic expressions. | |
// | |
// For example, consider the function | |
// | |
// f(x) = x^2 , | |
// | |
// evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20. | |
// Next, argument 10 with an infinitesimal to get: | |
// | |
// f(10 + e) = (10 + e)^2 | |
// = 100 + 2 * 10 * e + e^2 | |
// = 100 + 20 * e -+- | |
// -- | | |
// | +--- This is zero, since e^2 = 0 | |
// | | |
// +----------------- This is df/dx! | |
// | |
// Note that the derivative of f with respect to x is simply the infinitesimal | |
// component of the value of f(x + e). So, in order to take the derivative of | |
// any function, it is only necessary to replace the numeric "object" used in | |
// the function with one extended with infinitesimals. The class Jet, defined in | |
// this header, is one such example of this, where substitution is done with | |
// templates. | |
// | |
// To handle derivatives of functions taking multiple arguments, different | |
// infinitesimals are used, one for each variable to take the derivative of. For | |
// example, consider a scalar function of two scalar parameters x and y: | |
// | |
// f(x, y) = x^2 + x * y | |
// | |
// Following the technique above, to compute the derivatives df/dx and df/dy for | |
// f(1, 3) involves doing two evaluations of f, the first time replacing x with | |
// x + e, the second time replacing y with y + e. | |
// | |
// For df/dx: | |
// | |
// f(1 + e, y) = (1 + e)^2 + (1 + e) * 3 | |
// = 1 + 2 * e + 3 + 3 * e | |
// = 4 + 5 * e | |
// | |
// --> df/dx = 5 | |
// | |
// For df/dy: | |
// | |
// f(1, 3 + e) = 1^2 + 1 * (3 + e) | |
// = 1 + 3 + e | |
// = 4 + e | |
// | |
// --> df/dy = 1 | |
// | |
// To take the gradient of f with the implementation of dual numbers ("jets") in | |
// this file, it is necessary to create a single jet type which has components | |
// for the derivative in x and y, and passing them to a templated version of f: | |
// | |
// template<typename T> | |
// T f(const T &x, const T &y) { | |
// return x * x + x * y; | |
// } | |
// | |
// // The "2" means there should be 2 dual number components. | |
// // It computes the partial derivative at x=10, y=20. | |
// Jet<double, 2> x(10, 0); // Pick the 0th dual number for x. | |
// Jet<double, 2> y(20, 1); // Pick the 1st dual number for y. | |
// Jet<double, 2> z = f(x, y); | |
// | |
// LOG(INFO) << "df/dx = " << z.v[0] | |
// << "df/dy = " << z.v[1]; | |
// | |
// Most users should not use Jet objects directly; a wrapper around Jet objects, | |
// which makes computing the derivative, gradient, or jacobian of templated | |
// functors simple, is in autodiff.h. Even autodiff.h should not be used | |
// directly; instead autodiff_cost_function.h is typically the file of interest. | |
// | |
// For the more mathematically inclined, this file implements first-order | |
// "jets". A 1st order jet is an element of the ring | |
// | |
// T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2 | |
// | |
// which essentially means that each jet consists of a "scalar" value 'a' from T | |
// and a 1st order perturbation vector 'v' of length N: | |
// | |
// x = a + \sum_i v[i] t_i | |
// | |
// A shorthand is to write an element as x = a + u, where u is the perturbation. | |
// Then, the main point about the arithmetic of jets is that the product of | |
// perturbations is zero: | |
// | |
// (a + u) * (b + v) = ab + av + bu + uv | |
// = ab + (av + bu) + 0 | |
// | |
// which is what operator* implements below. Addition is simpler: | |
// | |
// (a + u) + (b + v) = (a + b) + (u + v). | |
// | |
// The only remaining question is how to evaluate the function of a jet, for | |
// which we use the chain rule: | |
// | |
// f(a + u) = f(a) + f'(a) u | |
// | |
// where f'(a) is the (scalar) derivative of f at a. | |
// | |
// By pushing these things through sufficiently and suitably templated | |
// functions, we can do automatic differentiation. Just be sure to turn on | |
// function inlining and common-subexpression elimination, or it will be very | |
// slow! | |
// | |
// WARNING: Most Ceres users should not directly include this file or know the | |
// details of how jets work. Instead the suggested method for automatic | |
// derivatives is to use autodiff_cost_function.h, which is a wrapper around | |
// both jets.h and autodiff.h to make taking derivatives of cost functions for | |
// use in Ceres easier. | |
// Here we provide partial specializations of std::common_type for the Jet class | |
// to allow determining a Jet type with a common underlying arithmetic type. | |
// Such an arithmetic type can be either a scalar or an another Jet. An example | |
// for a common type, say, between a float and a Jet<double, N> is a Jet<double, | |
// N> (i.e., std::common_type_t<float, ceres::Jet<double, N>> and | |
// ceres::Jet<double, N> refer to the same type.) | |
// | |
// The partial specialization are also used for determining compatible types by | |
// means of SFINAE and thus allow such types to be expressed as operands of | |
// logical comparison operators. Missing (partial) specialization of | |
// std::common_type for a particular (custom) type will therefore disable the | |
// use of comparison operators defined by Ceres. | |
// | |
// Since these partial specializations are used as SFINAE constraints, they | |
// enable standard promotion rules between various scalar types and consequently | |
// their use in comparison against a Jet without providing implicit | |
// conversions from a scalar, such as an int, to a Jet (see the implementation | |
// of logical comparison operators below). | |
template <typename T, int N, typename U> | |
struct std::common_type<T, ceres::Jet<U, N>> { | |
using type = ceres::Jet<common_type_t<T, U>, N>; | |
}; | |
template <typename T, int N, typename U> | |
struct std::common_type<ceres::Jet<T, N>, U> { | |
using type = ceres::Jet<common_type_t<T, U>, N>; | |
}; | |
template <typename T, int N, typename U> | |
struct std::common_type<ceres::Jet<T, N>, ceres::Jet<U, N>> { | |
using type = ceres::Jet<common_type_t<T, U>, N>; | |
}; | |
namespace ceres { | |
template <typename T, int N> | |
struct Jet { | |
enum { DIMENSION = N }; | |
using Scalar = T; | |
// Default-construct "a" because otherwise this can lead to false errors about | |
// uninitialized uses when other classes relying on default constructed T | |
// (where T is a Jet<T, N>). This usually only happens in opt mode. Note that | |
// the C++ standard mandates that e.g. default constructed doubles are | |
// initialized to 0.0; see sections 8.5 of the C++03 standard. | |
Jet() : a() { v.setConstant(Scalar()); } | |
// Constructor from scalar: a + 0. | |
explicit Jet(const T& value) { | |
a = value; | |
v.setConstant(Scalar()); | |
} | |
// Constructor from scalar plus variable: a + t_i. | |
Jet(const T& value, int k) { | |
a = value; | |
v.setConstant(Scalar()); | |
v[k] = T(1.0); | |
} | |
// Constructor from scalar and vector part | |
// The use of Eigen::DenseBase allows Eigen expressions | |
// to be passed in without being fully evaluated until | |
// they are assigned to v | |
template <typename Derived> | |
EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived>& v) | |
: a(a), v(v) {} | |
// Compound operators | |
Jet<T, N>& operator+=(const Jet<T, N>& y) { | |
*this = *this + y; | |
return *this; | |
} | |
Jet<T, N>& operator-=(const Jet<T, N>& y) { | |
*this = *this - y; | |
return *this; | |
} | |
Jet<T, N>& operator*=(const Jet<T, N>& y) { | |
*this = *this * y; | |
return *this; | |
} | |
Jet<T, N>& operator/=(const Jet<T, N>& y) { | |
*this = *this / y; | |
return *this; | |
} | |
// Compound with scalar operators. | |
Jet<T, N>& operator+=(const T& s) { | |
*this = *this + s; | |
return *this; | |
} | |
Jet<T, N>& operator-=(const T& s) { | |
*this = *this - s; | |
return *this; | |
} | |
Jet<T, N>& operator*=(const T& s) { | |
*this = *this * s; | |
return *this; | |
} | |
Jet<T, N>& operator/=(const T& s) { | |
*this = *this / s; | |
return *this; | |
} | |
// The scalar part. | |
T a; | |
// The infinitesimal part. | |
Eigen::Matrix<T, N, 1> v; | |
// This struct needs to have an Eigen aligned operator new as it contains | |
// fixed-size Eigen types. | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW | |
}; | |
// Unary + | |
template <typename T, int N> | |
inline Jet<T, N> const& operator+(const Jet<T, N>& f) { | |
return f; | |
} | |
// TODO(keir): Try adding __attribute__((always_inline)) to these functions to | |
// see if it causes a performance increase. | |
// Unary - | |
template <typename T, int N> | |
inline Jet<T, N> operator-(const Jet<T, N>& f) { | |
return Jet<T, N>(-f.a, -f.v); | |
} | |
// Binary + | |
template <typename T, int N> | |
inline Jet<T, N> operator+(const Jet<T, N>& f, const Jet<T, N>& g) { | |
return Jet<T, N>(f.a + g.a, f.v + g.v); | |
} | |
// Binary + with a scalar: x + s | |
template <typename T, int N> | |
inline Jet<T, N> operator+(const Jet<T, N>& f, T s) { | |
return Jet<T, N>(f.a + s, f.v); | |
} | |
// Binary + with a scalar: s + x | |
template <typename T, int N> | |
inline Jet<T, N> operator+(T s, const Jet<T, N>& f) { | |
return Jet<T, N>(f.a + s, f.v); | |
} | |
// Binary - | |
template <typename T, int N> | |
inline Jet<T, N> operator-(const Jet<T, N>& f, const Jet<T, N>& g) { | |
return Jet<T, N>(f.a - g.a, f.v - g.v); | |
} | |
// Binary - with a scalar: x - s | |
template <typename T, int N> | |
inline Jet<T, N> operator-(const Jet<T, N>& f, T s) { | |
return Jet<T, N>(f.a - s, f.v); | |
} | |
// Binary - with a scalar: s - x | |
template <typename T, int N> | |
inline Jet<T, N> operator-(T s, const Jet<T, N>& f) { | |
return Jet<T, N>(s - f.a, -f.v); | |
} | |
// Binary * | |
template <typename T, int N> | |
inline Jet<T, N> operator*(const Jet<T, N>& f, const Jet<T, N>& g) { | |
return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a); | |
} | |
// Binary * with a scalar: x * s | |
template <typename T, int N> | |
inline Jet<T, N> operator*(const Jet<T, N>& f, T s) { | |
return Jet<T, N>(f.a * s, f.v * s); | |
} | |
// Binary * with a scalar: s * x | |
template <typename T, int N> | |
inline Jet<T, N> operator*(T s, const Jet<T, N>& f) { | |
return Jet<T, N>(f.a * s, f.v * s); | |
} | |
// Binary / | |
template <typename T, int N> | |
inline Jet<T, N> operator/(const Jet<T, N>& f, const Jet<T, N>& g) { | |
// This uses: | |
// | |
// a + u (a + u)(b - v) (a + u)(b - v) | |
// ----- = -------------- = -------------- | |
// b + v (b + v)(b - v) b^2 | |
// | |
// which holds because v*v = 0. | |
const T g_a_inverse = T(1.0) / g.a; | |
const T f_a_by_g_a = f.a * g_a_inverse; | |
return Jet<T, N>(f_a_by_g_a, (f.v - f_a_by_g_a * g.v) * g_a_inverse); | |
} | |
// Binary / with a scalar: s / x | |
template <typename T, int N> | |
inline Jet<T, N> operator/(T s, const Jet<T, N>& g) { | |
const T minus_s_g_a_inverse2 = -s / (g.a * g.a); | |
return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2); | |
} | |
// Binary / with a scalar: x / s | |
template <typename T, int N> | |
inline Jet<T, N> operator/(const Jet<T, N>& f, T s) { | |
const T s_inverse = T(1.0) / s; | |
return Jet<T, N>(f.a * s_inverse, f.v * s_inverse); | |
} | |
// Binary comparison operators for both scalars and jets. At least one of the | |
// operands must be a Jet. Promotable scalars (e.g., int, float, double etc.) | |
// can appear on either side of the operator. std::common_type_t is used as an | |
// SFINAE constraint to selectively enable compatible operand types. This allows | |
// comparison, for instance, against int literals without implicit conversion. | |
// In case the Jet arithmetic type is a Jet itself, a recursive expansion of Jet | |
// value is performed. | |
CERES_DEFINE_JET_COMPARISON_OPERATOR(<) // NOLINT | |
CERES_DEFINE_JET_COMPARISON_OPERATOR(<=) // NOLINT | |
CERES_DEFINE_JET_COMPARISON_OPERATOR(>) // NOLINT | |
CERES_DEFINE_JET_COMPARISON_OPERATOR(>=) // NOLINT | |
CERES_DEFINE_JET_COMPARISON_OPERATOR(==) // NOLINT | |
CERES_DEFINE_JET_COMPARISON_OPERATOR(!=) // NOLINT | |
// Pull some functions from namespace std. | |
// | |
// This is necessary because we want to use the same name (e.g. 'sqrt') for | |
// double-valued and Jet-valued functions, but we are not allowed to put | |
// Jet-valued functions inside namespace std. | |
using std::abs; | |
using std::acos; | |
using std::asin; | |
using std::atan; | |
using std::atan2; | |
using std::cbrt; | |
using std::ceil; | |
using std::copysign; | |
using std::cos; | |
using std::cosh; | |
using std::erf; | |
using std::erfc; | |
using std::exp; | |
using std::exp2; | |
using std::expm1; | |
using std::fdim; | |
using std::floor; | |
using std::fma; | |
using std::fmax; | |
using std::fmin; | |
using std::fpclassify; | |
using std::hypot; | |
using std::isfinite; | |
using std::isinf; | |
using std::isnan; | |
using std::isnormal; | |
using std::log; | |
using std::log10; | |
using std::log1p; | |
using std::log2; | |
using std::norm; | |
using std::pow; | |
using std::signbit; | |
using std::sin; | |
using std::sinh; | |
using std::sqrt; | |
using std::tan; | |
using std::tanh; | |
// MSVC (up to 1930) defines quiet comparison functions as template functions | |
// which causes compilation errors due to ambiguity in the template parameter | |
// type resolution for using declarations in the ceres namespace. Workaround the | |
// issue by defining specific overload and bypass MSVC standard library | |
// definitions. | |
inline bool isgreater(double lhs, | |
double rhs) noexcept(noexcept(std::isgreater(lhs, rhs))) { | |
return std::isgreater(lhs, rhs); | |
} | |
inline bool isless(double lhs, | |
double rhs) noexcept(noexcept(std::isless(lhs, rhs))) { | |
return std::isless(lhs, rhs); | |
} | |
inline bool islessequal(double lhs, | |
double rhs) noexcept(noexcept(std::islessequal(lhs, | |
rhs))) { | |
return std::islessequal(lhs, rhs); | |
} | |
inline bool isgreaterequal(double lhs, double rhs) noexcept( | |
noexcept(std::isgreaterequal(lhs, rhs))) { | |
return std::isgreaterequal(lhs, rhs); | |
} | |
inline bool islessgreater(double lhs, double rhs) noexcept( | |
noexcept(std::islessgreater(lhs, rhs))) { | |
return std::islessgreater(lhs, rhs); | |
} | |
inline bool isunordered(double lhs, | |
double rhs) noexcept(noexcept(std::isunordered(lhs, | |
rhs))) { | |
return std::isunordered(lhs, rhs); | |
} | |
using std::isgreater; | |
using std::isgreaterequal; | |
using std::isless; | |
using std::islessequal; | |
using std::islessgreater; | |
using std::isunordered; | |
using std::lerp; | |
using std::midpoint; | |
// Legacy names from pre-C++11 days. | |
// clang-format off | |
CERES_DEPRECATED_WITH_MSG("ceres::IsFinite will be removed in a future Ceres Solver release. Please use ceres::isfinite.") | |
inline bool IsFinite(double x) { return std::isfinite(x); } | |
CERES_DEPRECATED_WITH_MSG("ceres::IsInfinite will be removed in a future Ceres Solver release. Please use ceres::isinf.") | |
inline bool IsInfinite(double x) { return std::isinf(x); } | |
CERES_DEPRECATED_WITH_MSG("ceres::IsNaN will be removed in a future Ceres Solver release. Please use ceres::isnan.") | |
inline bool IsNaN(double x) { return std::isnan(x); } | |
CERES_DEPRECATED_WITH_MSG("ceres::IsNormal will be removed in a future Ceres Solver release. Please use ceres::isnormal.") | |
inline bool IsNormal(double x) { return std::isnormal(x); } | |
// clang-format on | |
// In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule. | |
// abs(x + h) ~= abs(x) + sgn(x)h | |
template <typename T, int N> | |
inline Jet<T, N> abs(const Jet<T, N>& f) { | |
return Jet<T, N>(abs(f.a), copysign(T(1), f.a) * f.v); | |
} | |
// copysign(a, b) composes a float with the magnitude of a and the sign of b. | |
// Therefore, the function can be formally defined as | |
// | |
// copysign(a, b) = sgn(b)|a| | |
// | |
// where | |
// | |
// d/dx |x| = sgn(x) | |
// d/dx sgn(x) = 2δ(x) | |
// | |
// sgn(x) being the signum function. Differentiating copysign(a, b) with respect | |
// to a and b gives: | |
// | |
// d/da sgn(b)|a| = sgn(a) sgn(b) | |
// d/db sgn(b)|a| = 2|a|δ(b) | |
// | |
// with the dual representation given by | |
// | |
// copysign(a + da, b + db) ~= sgn(b)|a| + (sgn(a)sgn(b) da + 2|a|δ(b) db) | |
// | |
// where δ(b) is the Dirac delta function. | |
template <typename T, int N> | |
inline Jet<T, N> copysign(const Jet<T, N>& f, const Jet<T, N> g) { | |
// The Dirac delta function δ(b) is undefined at b=0 (here it's | |
// infinite) and 0 everywhere else. | |
T d = fpclassify(g) == FP_ZERO ? std::numeric_limits<T>::infinity() : T(0); | |
T sa = copysign(T(1), f.a); // sgn(a) | |
T sb = copysign(T(1), g.a); // sgn(b) | |
// The second part of the infinitesimal is 2|a|δ(b) which is either infinity | |
// or 0 unless a or any of the values of the b infinitesimal are 0. In the | |
// latter case, the corresponding values become NaNs (multiplying 0 by | |
// infinity gives NaN). We drop the constant factor 2 since it does not change | |
// the result (its values will still be either 0, infinity or NaN). | |
return Jet<T, N>(copysign(f.a, g.a), sa * sb * f.v + abs(f.a) * d * g.v); | |
} | |
// log(a + h) ~= log(a) + h / a | |
template <typename T, int N> | |
inline Jet<T, N> log(const Jet<T, N>& f) { | |
const T a_inverse = T(1.0) / f.a; | |
return Jet<T, N>(log(f.a), f.v * a_inverse); | |
} | |
// log10(a + h) ~= log10(a) + h / (a log(10)) | |
template <typename T, int N> | |
inline Jet<T, N> log10(const Jet<T, N>& f) { | |
// Most compilers will expand log(10) to a constant. | |
const T a_inverse = T(1.0) / (f.a * log(T(10.0))); | |
return Jet<T, N>(log10(f.a), f.v * a_inverse); | |
} | |
// log1p(a + h) ~= log1p(a) + h / (1 + a) | |
template <typename T, int N> | |
inline Jet<T, N> log1p(const Jet<T, N>& f) { | |
const T a_inverse = T(1.0) / (T(1.0) + f.a); | |
return Jet<T, N>(log1p(f.a), f.v * a_inverse); | |
} | |
// exp(a + h) ~= exp(a) + exp(a) h | |
template <typename T, int N> | |
inline Jet<T, N> exp(const Jet<T, N>& f) { | |
const T tmp = exp(f.a); | |
return Jet<T, N>(tmp, tmp * f.v); | |
} | |
// expm1(a + h) ~= expm1(a) + exp(a) h | |
template <typename T, int N> | |
inline Jet<T, N> expm1(const Jet<T, N>& f) { | |
const T tmp = expm1(f.a); | |
const T expa = tmp + T(1.0); // exp(a) = expm1(a) + 1 | |
return Jet<T, N>(tmp, expa * f.v); | |
} | |
// sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a)) | |
template <typename T, int N> | |
inline Jet<T, N> sqrt(const Jet<T, N>& f) { | |
const T tmp = sqrt(f.a); | |
const T two_a_inverse = T(1.0) / (T(2.0) * tmp); | |
return Jet<T, N>(tmp, f.v * two_a_inverse); | |
} | |
// cos(a + h) ~= cos(a) - sin(a) h | |
template <typename T, int N> | |
inline Jet<T, N> cos(const Jet<T, N>& f) { | |
return Jet<T, N>(cos(f.a), -sin(f.a) * f.v); | |
} | |
// acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h | |
template <typename T, int N> | |
inline Jet<T, N> acos(const Jet<T, N>& f) { | |
const T tmp = -T(1.0) / sqrt(T(1.0) - f.a * f.a); | |
return Jet<T, N>(acos(f.a), tmp * f.v); | |
} | |
// sin(a + h) ~= sin(a) + cos(a) h | |
template <typename T, int N> | |
inline Jet<T, N> sin(const Jet<T, N>& f) { | |
return Jet<T, N>(sin(f.a), cos(f.a) * f.v); | |
} | |
// asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h | |
template <typename T, int N> | |
inline Jet<T, N> asin(const Jet<T, N>& f) { | |
const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a); | |
return Jet<T, N>(asin(f.a), tmp * f.v); | |
} | |
// tan(a + h) ~= tan(a) + (1 + tan(a)^2) h | |
template <typename T, int N> | |
inline Jet<T, N> tan(const Jet<T, N>& f) { | |
const T tan_a = tan(f.a); | |
const T tmp = T(1.0) + tan_a * tan_a; | |
return Jet<T, N>(tan_a, tmp * f.v); | |
} | |
// atan(a + h) ~= atan(a) + 1 / (1 + a^2) h | |
template <typename T, int N> | |
inline Jet<T, N> atan(const Jet<T, N>& f) { | |
const T tmp = T(1.0) / (T(1.0) + f.a * f.a); | |
return Jet<T, N>(atan(f.a), tmp * f.v); | |
} | |
// sinh(a + h) ~= sinh(a) + cosh(a) h | |
template <typename T, int N> | |
inline Jet<T, N> sinh(const Jet<T, N>& f) { | |
return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v); | |
} | |
// cosh(a + h) ~= cosh(a) + sinh(a) h | |
template <typename T, int N> | |
inline Jet<T, N> cosh(const Jet<T, N>& f) { | |
return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v); | |
} | |
// tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h | |
template <typename T, int N> | |
inline Jet<T, N> tanh(const Jet<T, N>& f) { | |
const T tanh_a = tanh(f.a); | |
const T tmp = T(1.0) - tanh_a * tanh_a; | |
return Jet<T, N>(tanh_a, tmp * f.v); | |
} | |
// The floor function should be used with extreme care as this operation will | |
// result in a zero derivative which provides no information to the solver. | |
// | |
// floor(a + h) ~= floor(a) + 0 | |
template <typename T, int N> | |
inline Jet<T, N> floor(const Jet<T, N>& f) { | |
return Jet<T, N>(floor(f.a)); | |
} | |
// The ceil function should be used with extreme care as this operation will | |
// result in a zero derivative which provides no information to the solver. | |
// | |
// ceil(a + h) ~= ceil(a) + 0 | |
template <typename T, int N> | |
inline Jet<T, N> ceil(const Jet<T, N>& f) { | |
return Jet<T, N>(ceil(f.a)); | |
} | |
// Some new additions to C++11: | |
// cbrt(a + h) ~= cbrt(a) + h / (3 a ^ (2/3)) | |
template <typename T, int N> | |
inline Jet<T, N> cbrt(const Jet<T, N>& f) { | |
const T derivative = T(1.0) / (T(3.0) * cbrt(f.a * f.a)); | |
return Jet<T, N>(cbrt(f.a), f.v * derivative); | |
} | |
// exp2(x + h) = 2^(x+h) ~= 2^x + h*2^x*log(2) | |
template <typename T, int N> | |
inline Jet<T, N> exp2(const Jet<T, N>& f) { | |
const T tmp = exp2(f.a); | |
const T derivative = tmp * log(T(2)); | |
return Jet<T, N>(tmp, f.v * derivative); | |
} | |
// log2(x + h) ~= log2(x) + h / (x * log(2)) | |
template <typename T, int N> | |
inline Jet<T, N> log2(const Jet<T, N>& f) { | |
const T derivative = T(1.0) / (f.a * log(T(2))); | |
return Jet<T, N>(log2(f.a), f.v * derivative); | |
} | |
// Like sqrt(x^2 + y^2), | |
// but acts to prevent underflow/overflow for small/large x/y. | |
// Note that the function is non-smooth at x=y=0, | |
// so the derivative is undefined there. | |
template <typename T, int N> | |
inline Jet<T, N> hypot(const Jet<T, N>& x, const Jet<T, N>& y) { | |
// d/da sqrt(a) = 0.5 / sqrt(a) | |
// d/dx x^2 + y^2 = 2x | |
// So by the chain rule: | |
// d/dx sqrt(x^2 + y^2) = 0.5 / sqrt(x^2 + y^2) * 2x = x / sqrt(x^2 + y^2) | |
// d/dy sqrt(x^2 + y^2) = y / sqrt(x^2 + y^2) | |
const T tmp = hypot(x.a, y.a); | |
return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v); | |
} | |
// Like sqrt(x^2 + y^2 + z^2), | |
// but acts to prevent underflow/overflow for small/large x/y/z. | |
// Note that the function is non-smooth at x=y=z=0, | |
// so the derivative is undefined there. | |
template <typename T, int N> | |
inline Jet<T, N> hypot(const Jet<T, N>& x, | |
const Jet<T, N>& y, | |
const Jet<T, N>& z) { | |
// d/da sqrt(a) = 0.5 / sqrt(a) | |
// d/dx x^2 + y^2 + z^2 = 2x | |
// So by the chain rule: | |
// d/dx sqrt(x^2 + y^2 + z^2) | |
// = 0.5 / sqrt(x^2 + y^2 + z^2) * 2x | |
// = x / sqrt(x^2 + y^2 + z^2) | |
// d/dy sqrt(x^2 + y^2 + z^2) = y / sqrt(x^2 + y^2 + z^2) | |
// d/dz sqrt(x^2 + y^2 + z^2) = z / sqrt(x^2 + y^2 + z^2) | |
const T tmp = hypot(x.a, y.a, z.a); | |
return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v + z.a / tmp * z.v); | |
} | |
// Like x * y + z but rounded only once. | |
template <typename T, int N> | |
inline Jet<T, N> fma(const Jet<T, N>& x, | |
const Jet<T, N>& y, | |
const Jet<T, N>& z) { | |
// d/dx fma(x, y, z) = y | |
// d/dy fma(x, y, z) = x | |
// d/dz fma(x, y, z) = 1 | |
return Jet<T, N>(fma(x.a, y.a, z.a), y.a * x.v + x.a * y.v + z.v); | |
} | |
// Returns the larger of the two arguments. NaNs are treated as missing data. | |
// | |
// NOTE: This function is NOT subject to any of the error conditions specified | |
// in `math_errhandling`. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline decltype(auto) fmax(const Lhs& f, const Rhs& g) { | |
using J = std::common_type_t<Lhs, Rhs>; | |
return (isnan(g) || isgreater(f, g)) ? J{f} : J{g}; | |
} | |
// Returns the smaller of the two arguments. NaNs are treated as missing data. | |
// | |
// NOTE: This function is NOT subject to any of the error conditions specified | |
// in `math_errhandling`. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline decltype(auto) fmin(const Lhs& f, const Rhs& g) { | |
using J = std::common_type_t<Lhs, Rhs>; | |
return (isnan(f) || isless(g, f)) ? J{g} : J{f}; | |
} | |
// Returns the positive difference (f - g) of two arguments and zero if f <= g. | |
// If at least one argument is NaN, a NaN is return. | |
// | |
// NOTE At least one of the argument types must be a Jet, the other one can be a | |
// scalar. In case both arguments are Jets, their dimensionality must match. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline decltype(auto) fdim(const Lhs& f, const Rhs& g) { | |
using J = std::common_type_t<Lhs, Rhs>; | |
if (isnan(f) || isnan(g)) { | |
return std::numeric_limits<J>::quiet_NaN(); | |
} | |
return isgreater(f, g) ? J{f - g} : J{}; | |
} | |
// erf is defined as an integral that cannot be expressed analytically | |
// however, the derivative is trivial to compute | |
// erf(x + h) = erf(x) + h * 2*exp(-x^2)/sqrt(pi) | |
template <typename T, int N> | |
inline Jet<T, N> erf(const Jet<T, N>& x) { | |
// We evaluate the constant as follows: | |
// 2 / sqrt(pi) = 1 / sqrt(atan(1.)) | |
// On POSIX sytems it is defined as M_2_SQRTPI, but this is not | |
// portable and the type may not be T. The above expression | |
// evaluates to full precision with IEEE arithmetic and, since it's | |
// constant, the compiler can generate exactly the same code. gcc | |
// does so even at -O0. | |
return Jet<T, N>(erf(x.a), x.v * exp(-x.a * x.a) * (T(1) / sqrt(atan(T(1))))); | |
} | |
// erfc(x) = 1-erf(x) | |
// erfc(x + h) = erfc(x) + h * (-2*exp(-x^2)/sqrt(pi)) | |
template <typename T, int N> | |
inline Jet<T, N> erfc(const Jet<T, N>& x) { | |
// See in erf() above for the evaluation of the constant in the derivative. | |
return Jet<T, N>(erfc(x.a), | |
-x.v * exp(-x.a * x.a) * (T(1) / sqrt(atan(T(1))))); | |
} | |
// Bessel functions of the first kind with integer order equal to 0, 1, n. | |
// | |
// Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of | |
// _j[0,1,n](). Where available on MSVC, use _j[0,1,n]() to avoid deprecated | |
// function errors in client code (the specific warning is suppressed when | |
// Ceres itself is built). | |
inline double BesselJ0(double x) { | |
return _j0(x); | |
return j0(x); | |
} | |
inline double BesselJ1(double x) { | |
return _j1(x); | |
return j1(x); | |
} | |
inline double BesselJn(int n, double x) { | |
return _jn(n, x); | |
return jn(n, x); | |
} | |
// For the formulae of the derivatives of the Bessel functions see the book: | |
// Olver, Lozier, Boisvert, Clark, NIST Handbook of Mathematical Functions, | |
// Cambridge University Press 2010. | |
// | |
// Formulae are also available at http://dlmf.nist.gov | |
// See formula http://dlmf.nist.gov/10.6#E3 | |
// j0(a + h) ~= j0(a) - j1(a) h | |
template <typename T, int N> | |
inline Jet<T, N> BesselJ0(const Jet<T, N>& f) { | |
return Jet<T, N>(BesselJ0(f.a), -BesselJ1(f.a) * f.v); | |
} | |
// See formula http://dlmf.nist.gov/10.6#E1 | |
// j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h | |
template <typename T, int N> | |
inline Jet<T, N> BesselJ1(const Jet<T, N>& f) { | |
return Jet<T, N>(BesselJ1(f.a), | |
T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v); | |
} | |
// See formula http://dlmf.nist.gov/10.6#E1 | |
// j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h | |
template <typename T, int N> | |
inline Jet<T, N> BesselJn(int n, const Jet<T, N>& f) { | |
return Jet<T, N>( | |
BesselJn(n, f.a), | |
T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v); | |
} | |
// Classification and comparison functionality referencing only the scalar part | |
// of a Jet. To classify the derivatives (e.g., for sanity checks), the dual | |
// part should be referenced explicitly. For instance, to check whether the | |
// derivatives of a Jet 'f' are reasonable, one can use | |
// | |
// isfinite(f.v.array()).all() | |
// !isnan(f.v.array()).any() | |
// | |
// etc., depending on the desired semantics. | |
// | |
// NOTE: Floating-point classification and comparison functions and operators | |
// should be used with care as no derivatives can be propagated by such | |
// functions directly but only by expressions resulting from corresponding | |
// conditional statements. At the same time, conditional statements can possibly | |
// introduce a discontinuity in the cost function making it impossible to | |
// evaluate its derivative and thus the optimization problem intractable. | |
// Determines whether the scalar part of the Jet is finite. | |
template <typename T, int N> | |
inline bool isfinite(const Jet<T, N>& f) { | |
return isfinite(f.a); | |
} | |
// Determines whether the scalar part of the Jet is infinite. | |
template <typename T, int N> | |
inline bool isinf(const Jet<T, N>& f) { | |
return isinf(f.a); | |
} | |
// Determines whether the scalar part of the Jet is NaN. | |
template <typename T, int N> | |
inline bool isnan(const Jet<T, N>& f) { | |
return isnan(f.a); | |
} | |
// Determines whether the scalar part of the Jet is neither zero, subnormal, | |
// infinite, nor NaN. | |
template <typename T, int N> | |
inline bool isnormal(const Jet<T, N>& f) { | |
return isnormal(f.a); | |
} | |
// Determines whether the scalar part of the Jet f is less than the scalar | |
// part of g. | |
// | |
// NOTE: This function does NOT set any floating-point exceptions. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline bool isless(const Lhs& f, const Rhs& g) { | |
using internal::AsScalar; | |
return isless(AsScalar(f), AsScalar(g)); | |
} | |
// Determines whether the scalar part of the Jet f is greater than the scalar | |
// part of g. | |
// | |
// NOTE: This function does NOT set any floating-point exceptions. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline bool isgreater(const Lhs& f, const Rhs& g) { | |
using internal::AsScalar; | |
return isgreater(AsScalar(f), AsScalar(g)); | |
} | |
// Determines whether the scalar part of the Jet f is less than or equal to the | |
// scalar part of g. | |
// | |
// NOTE: This function does NOT set any floating-point exceptions. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline bool islessequal(const Lhs& f, const Rhs& g) { | |
using internal::AsScalar; | |
return islessequal(AsScalar(f), AsScalar(g)); | |
} | |
// Determines whether the scalar part of the Jet f is less than or greater than | |
// (f < g || f > g) the scalar part of g. | |
// | |
// NOTE: This function does NOT set any floating-point exceptions. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline bool islessgreater(const Lhs& f, const Rhs& g) { | |
using internal::AsScalar; | |
return islessgreater(AsScalar(f), AsScalar(g)); | |
} | |
// Determines whether the scalar part of the Jet f is greater than or equal to | |
// the scalar part of g. | |
// | |
// NOTE: This function does NOT set any floating-point exceptions. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline bool isgreaterequal(const Lhs& f, const Rhs& g) { | |
using internal::AsScalar; | |
return isgreaterequal(AsScalar(f), AsScalar(g)); | |
} | |
// Determines if either of the scalar parts of the arguments are NaN and | |
// thus cannot be ordered with respect to each other. | |
template <typename Lhs, | |
typename Rhs, | |
std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr> | |
inline bool isunordered(const Lhs& f, const Rhs& g) { | |
using internal::AsScalar; | |
return isunordered(AsScalar(f), AsScalar(g)); | |
} | |
// Categorize scalar part as zero, subnormal, normal, infinite, NaN, or | |
// implementation-defined. | |
template <typename T, int N> | |
inline int fpclassify(const Jet<T, N>& f) { | |
return fpclassify(f.a); | |
} | |
// Determines whether the scalar part of the argument is negative. | |
template <typename T, int N> | |
inline bool signbit(const Jet<T, N>& f) { | |
return signbit(f.a); | |
} | |
// Legacy functions from the pre-C++11 days. | |
template <typename T, int N> | |
CERES_DEPRECATED_WITH_MSG( | |
"ceres::IsFinite will be removed in a future Ceres Solver release. Please " | |
"use ceres::isfinite.") | |
inline bool IsFinite(const Jet<T, N>& f) { | |
return isfinite(f); | |
} | |
template <typename T, int N> | |
CERES_DEPRECATED_WITH_MSG( | |
"ceres::IsNaN will be removed in a future Ceres Solver release. Please use " | |
"ceres::isnan.") | |
inline bool IsNaN(const Jet<T, N>& f) { | |
return isnan(f); | |
} | |
template <typename T, int N> | |
CERES_DEPRECATED_WITH_MSG( | |
"ceres::IsNormal will be removed in a future Ceres Solver release. Please " | |
"use ceres::isnormal.") | |
inline bool IsNormal(const Jet<T, N>& f) { | |
return isnormal(f); | |
} | |
// The jet is infinite if any part of the jet is infinite. | |
template <typename T, int N> | |
CERES_DEPRECATED_WITH_MSG( | |
"ceres::IsInfinite will be removed in a future Ceres Solver release. " | |
"Please use ceres::isinf.") | |
inline bool IsInfinite(const Jet<T, N>& f) { | |
return isinf(f); | |
} | |
// Computes the linear interpolation a + t(b - a) between a and b at the value | |
// t. For arguments outside of the range 0 <= t <= 1, the values are | |
// extrapolated. | |
// | |
// Differentiating lerp(a, b, t) with respect to a, b, and t gives: | |
// | |
// d/da lerp(a, b, t) = 1 - t | |
// d/db lerp(a, b, t) = t | |
// d/dt lerp(a, b, t) = b - a | |
// | |
// with the dual representation given by | |
// | |
// lerp(a + da, b + db, t + dt) | |
// ~= lerp(a, b, t) + (1 - t) da + t db + (b - a) dt . | |
template <typename T, int N> | |
inline Jet<T, N> lerp(const Jet<T, N>& a, | |
const Jet<T, N>& b, | |
const Jet<T, N>& t) { | |
return Jet<T, N>{lerp(a.a, b.a, t.a), | |
(T(1) - t.a) * a.v + t.a * b.v + (b.a - a.a) * t.v}; | |
} | |
// Computes the midpoint a + (b - a) / 2. | |
// | |
// Differentiating midpoint(a, b) with respect to a and b gives: | |
// | |
// d/da midpoint(a, b) = 1/2 | |
// d/db midpoint(a, b) = 1/2 | |
// | |
// with the dual representation given by | |
// | |
// midpoint(a + da, b + db) ~= midpoint(a, b) + (da + db) / 2 . | |
template <typename T, int N> | |
inline Jet<T, N> midpoint(const Jet<T, N>& a, const Jet<T, N>& b) { | |
Jet<T, N> result{midpoint(a.a, b.a)}; | |
// To avoid overflow in the differential, compute | |
// (da + db) / 2 using midpoint. | |
for (int i = 0; i < N; ++i) { | |
result.v[i] = midpoint(a.v[i], b.v[i]); | |
} | |
return result; | |
} | |
// atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2) | |
// | |
// In words: the rate of change of theta is 1/r times the rate of | |
// change of (x, y) in the positive angular direction. | |
template <typename T, int N> | |
inline Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) { | |
// Note order of arguments: | |
// | |
// f = a + da | |
// g = b + db | |
T const tmp = T(1.0) / (f.a * f.a + g.a * g.a); | |
return Jet<T, N>(atan2(g.a, f.a), tmp * (-g.a * f.v + f.a * g.v)); | |
} | |
// Computes the square x^2 of a real number x (not the Euclidean L^2 norm as | |
// the name might suggest). | |
// | |
// NOTE: While std::norm is primarily intended for computing the squared | |
// magnitude of a std::complex<> number, the current Jet implementation does not | |
// support mixing a scalar T in its real part and std::complex<T> and in the | |
// infinitesimal. Mixed Jet support is necessary for the type decay from | |
// std::complex<T> to T (the squared magnitude of a complex number is always | |
// real) performed by std::norm. | |
// | |
// norm(x + h) ~= norm(x) + 2x h | |
template <typename T, int N> | |
inline Jet<T, N> norm(const Jet<T, N>& f) { | |
return Jet<T, N>(norm(f.a), T(2) * f.a * f.v); | |
} | |
// pow -- base is a differentiable function, exponent is a constant. | |
// (a+da)^p ~= a^p + p*a^(p-1) da | |
template <typename T, int N> | |
inline Jet<T, N> pow(const Jet<T, N>& f, double g) { | |
T const tmp = g * pow(f.a, g - T(1.0)); | |
return Jet<T, N>(pow(f.a, g), tmp * f.v); | |
} | |
// pow -- base is a constant, exponent is a differentiable function. | |
// We have various special cases, see the comment for pow(Jet, Jet) for | |
// analysis: | |
// | |
// 1. For f > 0 we have: (f)^(g + dg) ~= f^g + f^g log(f) dg | |
// | |
// 2. For f == 0 and g > 0 we have: (f)^(g + dg) ~= f^g | |
// | |
// 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg | |
// != 0, the derivatives are not defined and we return NaN. | |
template <typename T, int N> | |
inline Jet<T, N> pow(T f, const Jet<T, N>& g) { | |
Jet<T, N> result; | |
if (fpclassify(f) == FP_ZERO && g > 0) { | |
// Handle case 2. | |
result = Jet<T, N>(T(0.0)); | |
} else { | |
if (f < 0 && g == floor(g.a)) { // Handle case 3. | |
result = Jet<T, N>(pow(f, g.a)); | |
for (int i = 0; i < N; i++) { | |
if (fpclassify(g.v[i]) != FP_ZERO) { | |
// Return a NaN when g.v != 0. | |
result.v[i] = std::numeric_limits<T>::quiet_NaN(); | |
} | |
} | |
} else { | |
// Handle case 1. | |
T const tmp = pow(f, g.a); | |
result = Jet<T, N>(tmp, log(f) * tmp * g.v); | |
} | |
} | |
return result; | |
} | |
// pow -- both base and exponent are differentiable functions. This has a | |
// variety of special cases that require careful handling. | |
// | |
// 1. For f > 0: | |
// (f + df)^(g + dg) ~= f^g + f^(g - 1) * (g * df + f * log(f) * dg) | |
// The numerical evaluation of f * log(f) for f > 0 is well behaved, even for | |
// extremely small values (e.g. 1e-99). | |
// | |
// 2. For f == 0 and g > 1: (f + df)^(g + dg) ~= 0 | |
// This cases is needed because log(0) can not be evaluated in the f > 0 | |
// expression. However the function f*log(f) is well behaved around f == 0 | |
// and its limit as f-->0 is zero. | |
// | |
// 3. For f == 0 and g == 1: (f + df)^(g + dg) ~= 0 + df | |
// | |
// 4. For f == 0 and 0 < g < 1: The value is finite but the derivatives are not. | |
// | |
// 5. For f == 0 and g < 0: The value and derivatives of f^g are not finite. | |
// | |
// 6. For f == 0 and g == 0: The C standard incorrectly defines 0^0 to be 1 | |
// "because there are applications that can exploit this definition". We | |
// (arbitrarily) decree that derivatives here will be nonfinite, since that | |
// is consistent with the behavior for f == 0, g < 0 and 0 < g < 1. | |
// Practically any definition could have been justified because mathematical | |
// consistency has been lost at this point. | |
// | |
// 7. For f < 0, g integer, dg == 0: (f + df)^(g + dg) ~= f^g + g * f^(g - 1) df | |
// This is equivalent to the case where f is a differentiable function and g | |
// is a constant (to first order). | |
// | |
// 8. For f < 0, g integer, dg != 0: The value is finite but the derivatives are | |
// not, because any change in the value of g moves us away from the point | |
// with a real-valued answer into the region with complex-valued answers. | |
// | |
// 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite. | |
template <typename T, int N> | |
inline Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) { | |
Jet<T, N> result; | |
if (fpclassify(f) == FP_ZERO && g >= 1) { | |
// Handle cases 2 and 3. | |
if (g > 1) { | |
result = Jet<T, N>(T(0.0)); | |
} else { | |
result = f; | |
} | |
} else { | |
if (f < 0 && g == floor(g.a)) { | |
// Handle cases 7 and 8. | |
T const tmp = g.a * pow(f.a, g.a - T(1.0)); | |
result = Jet<T, N>(pow(f.a, g.a), tmp * f.v); | |
for (int i = 0; i < N; i++) { | |
if (fpclassify(g.v[i]) != FP_ZERO) { | |
// Return a NaN when g.v != 0. | |
result.v[i] = T(std::numeric_limits<double>::quiet_NaN()); | |
} | |
} | |
} else { | |
// Handle the remaining cases. For cases 4,5,6,9 we allow the log() | |
// function to generate -HUGE_VAL or NaN, since those cases result in a | |
// nonfinite derivative. | |
T const tmp1 = pow(f.a, g.a); | |
T const tmp2 = g.a * pow(f.a, g.a - T(1.0)); | |
T const tmp3 = tmp1 * log(f.a); | |
result = Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v); | |
} | |
} | |
return result; | |
} | |
// Note: This has to be in the ceres namespace for argument dependent lookup to | |
// function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with | |
// strange compile errors. | |
template <typename T, int N> | |
inline std::ostream& operator<<(std::ostream& s, const Jet<T, N>& z) { | |
s << "[" << z.a << " ; "; | |
for (int i = 0; i < N; ++i) { | |
s << z.v[i]; | |
if (i != N - 1) { | |
s << ", "; | |
} | |
} | |
s << "]"; | |
return s; | |
} | |
} // namespace ceres | |
namespace std { | |
template <typename T, int N> | |
struct numeric_limits<ceres::Jet<T, N>> { | |
static constexpr bool is_specialized = true; | |
static constexpr bool is_signed = std::numeric_limits<T>::is_signed; | |
static constexpr bool is_integer = std::numeric_limits<T>::is_integer; | |
static constexpr bool is_exact = std::numeric_limits<T>::is_exact; | |
static constexpr bool has_infinity = std::numeric_limits<T>::has_infinity; | |
static constexpr bool has_quiet_NaN = std::numeric_limits<T>::has_quiet_NaN; | |
static constexpr bool has_signaling_NaN = | |
std::numeric_limits<T>::has_signaling_NaN; | |
static constexpr bool is_iec559 = std::numeric_limits<T>::is_iec559; | |
static constexpr bool is_bounded = std::numeric_limits<T>::is_bounded; | |
static constexpr bool is_modulo = std::numeric_limits<T>::is_modulo; | |
static constexpr std::float_denorm_style has_denorm = | |
std::numeric_limits<T>::has_denorm; | |
static constexpr std::float_round_style round_style = | |
std::numeric_limits<T>::round_style; | |
static constexpr int digits = std::numeric_limits<T>::digits; | |
static constexpr int digits10 = std::numeric_limits<T>::digits10; | |
static constexpr int max_digits10 = std::numeric_limits<T>::max_digits10; | |
static constexpr int radix = std::numeric_limits<T>::radix; | |
static constexpr int min_exponent = std::numeric_limits<T>::min_exponent; | |
static constexpr int min_exponent10 = std::numeric_limits<T>::max_exponent10; | |
static constexpr int max_exponent = std::numeric_limits<T>::max_exponent; | |
static constexpr int max_exponent10 = std::numeric_limits<T>::max_exponent10; | |
static constexpr bool traps = std::numeric_limits<T>::traps; | |
static constexpr bool tinyness_before = | |
std::numeric_limits<T>::tinyness_before; | |
static constexpr ceres::Jet<T, N> min | |
CERES_PREVENT_MACRO_SUBSTITUTION() noexcept { | |
return ceres::Jet<T, N>((std::numeric_limits<T>::min)()); | |
} | |
static constexpr ceres::Jet<T, N> lowest() noexcept { | |
return ceres::Jet<T, N>(std::numeric_limits<T>::lowest()); | |
} | |
static constexpr ceres::Jet<T, N> epsilon() noexcept { | |
return ceres::Jet<T, N>(std::numeric_limits<T>::epsilon()); | |
} | |
static constexpr ceres::Jet<T, N> round_error() noexcept { | |
return ceres::Jet<T, N>(std::numeric_limits<T>::round_error()); | |
} | |
static constexpr ceres::Jet<T, N> infinity() noexcept { | |
return ceres::Jet<T, N>(std::numeric_limits<T>::infinity()); | |
} | |
static constexpr ceres::Jet<T, N> quiet_NaN() noexcept { | |
return ceres::Jet<T, N>(std::numeric_limits<T>::quiet_NaN()); | |
} | |
static constexpr ceres::Jet<T, N> signaling_NaN() noexcept { | |
return ceres::Jet<T, N>(std::numeric_limits<T>::signaling_NaN()); | |
} | |
static constexpr ceres::Jet<T, N> denorm_min() noexcept { | |
return ceres::Jet<T, N>(std::numeric_limits<T>::denorm_min()); | |
} | |
static constexpr ceres::Jet<T, N> max | |
CERES_PREVENT_MACRO_SUBSTITUTION() noexcept { | |
return ceres::Jet<T, N>((std::numeric_limits<T>::max)()); | |
} | |
}; | |
} // namespace std | |
namespace Eigen { | |
// Creating a specialization of NumTraits enables placing Jet objects inside | |
// Eigen arrays, getting all the goodness of Eigen combined with autodiff. | |
template <typename T, int N> | |
struct NumTraits<ceres::Jet<T, N>> { | |
using Real = ceres::Jet<T, N>; | |
using NonInteger = ceres::Jet<T, N>; | |
using Nested = ceres::Jet<T, N>; | |
using Literal = ceres::Jet<T, N>; | |
static typename ceres::Jet<T, N> dummy_precision() { | |
return ceres::Jet<T, N>(1e-12); | |
} | |
static inline Real epsilon() { | |
return Real(std::numeric_limits<T>::epsilon()); | |
} | |
static inline int digits10() { return NumTraits<T>::digits10(); } | |
enum { | |
IsComplex = 0, | |
IsInteger = 0, | |
IsSigned, | |
ReadCost = 1, | |
AddCost = 1, | |
// For Jet types, multiplication is more expensive than addition. | |
MulCost = 3, | |
HasFloatingPoint = 1, | |
RequireInitialization = 1 | |
}; | |
template <bool Vectorized> | |
struct Div { | |
enum { | |
AVX = true, | |
AVX = false, | |
// Assuming that for Jets, division is as expensive as | |
// multiplication. | |
Cost = 3 | |
}; | |
}; | |
static inline Real highest() { return Real((std::numeric_limits<T>::max)()); } | |
static inline Real lowest() { return Real(-(std::numeric_limits<T>::max)()); } | |
}; | |
// Specifying the return type of binary operations between Jets and scalar types | |
// allows you to perform matrix/array operations with Eigen matrices and arrays | |
// such as addition, subtraction, multiplication, and division where one Eigen | |
// matrix/array is of type Jet and the other is a scalar type. This improves | |
// performance by using the optimized scalar-to-Jet binary operations but | |
// is only available on Eigen versions >= 3.3 | |
template <typename BinaryOp, typename T, int N> | |
struct ScalarBinaryOpTraits<ceres::Jet<T, N>, T, BinaryOp> { | |
using ReturnType = ceres::Jet<T, N>; | |
}; | |
template <typename BinaryOp, typename T, int N> | |
struct ScalarBinaryOpTraits<T, ceres::Jet<T, N>, BinaryOp> { | |
using ReturnType = ceres::Jet<T, N>; | |
}; | |
} // namespace Eigen | |