// Ceres Solver - A fast non-linear least squares minimizer | |
// Copyright 2019 Google Inc. All rights reserved. | |
// http://ceres-solver.org/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// * Neither the name of Google Inc. nor the names of its contributors may be | |
// used to endorse or promote products derived from this software without | |
// specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: sameeragarwal@google.com (Sameer Agarwal) | |
namespace ceres { | |
class Problem; | |
namespace internal { | |
class CovarianceImpl; | |
} // namespace internal | |
// WARNING | |
// ======= | |
// It is very easy to use this class incorrectly without understanding | |
// the underlying mathematics. Please read and understand the | |
// documentation completely before attempting to use it. | |
// | |
// | |
// This class allows the user to evaluate the covariance for a | |
// non-linear least squares problem and provides random access to its | |
// blocks | |
// | |
// Background | |
// ========== | |
// One way to assess the quality of the solution returned by a | |
// non-linear least squares solver is to analyze the covariance of the | |
// solution. | |
// | |
// Let us consider the non-linear regression problem | |
// | |
// y = f(x) + N(0, I) | |
// | |
// i.e., the observation y is a random non-linear function of the | |
// independent variable x with mean f(x) and identity covariance. Then | |
// the maximum likelihood estimate of x given observations y is the | |
// solution to the non-linear least squares problem: | |
// | |
// x* = arg min_x |f(x) - y|^2 | |
// | |
// And the covariance of x* is given by | |
// | |
// C(x*) = inverse[J'(x*)J(x*)] | |
// | |
// Here J(x*) is the Jacobian of f at x*. The above formula assumes | |
// that J(x*) has full column rank. | |
// | |
// If J(x*) is rank deficient, then the covariance matrix C(x*) is | |
// also rank deficient and is given by | |
// | |
// C(x*) = pseudoinverse[J'(x*)J(x*)] | |
// | |
// Note that in the above, we assumed that the covariance | |
// matrix for y was identity. This is an important assumption. If this | |
// is not the case and we have | |
// | |
// y = f(x) + N(0, S) | |
// | |
// Where S is a positive semi-definite matrix denoting the covariance | |
// of y, then the maximum likelihood problem to be solved is | |
// | |
// x* = arg min_x f'(x) inverse[S] f(x) | |
// | |
// and the corresponding covariance estimate of x* is given by | |
// | |
// C(x*) = inverse[J'(x*) inverse[S] J(x*)] | |
// | |
// So, if it is the case that the observations being fitted to have a | |
// covariance matrix not equal to identity, then it is the user's | |
// responsibility that the corresponding cost functions are correctly | |
// scaled, e.g. in the above case the cost function for this problem | |
// should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2} | |
// is the inverse square root of the covariance matrix S. | |
// | |
// This class allows the user to evaluate the covariance for a | |
// non-linear least squares problem and provides random access to its | |
// blocks. The computation assumes that the CostFunctions compute | |
// residuals such that their covariance is identity. | |
// | |
// Since the computation of the covariance matrix requires computing | |
// the inverse of a potentially large matrix, this can involve a | |
// rather large amount of time and memory. However, it is usually the | |
// case that the user is only interested in a small part of the | |
// covariance matrix. Quite often just the block diagonal. This class | |
// allows the user to specify the parts of the covariance matrix that | |
// she is interested in and then uses this information to only compute | |
// and store those parts of the covariance matrix. | |
// | |
// Rank of the Jacobian | |
// -------------------- | |
// As we noted above, if the jacobian is rank deficient, then the | |
// inverse of J'J is not defined and instead a pseudo inverse needs to | |
// be computed. | |
// | |
// The rank deficiency in J can be structural -- columns which are | |
// always known to be zero or numerical -- depending on the exact | |
// values in the Jacobian. | |
// | |
// Structural rank deficiency occurs when the problem contains | |
// parameter blocks that are constant. This class correctly handles | |
// structural rank deficiency like that. | |
// | |
// Numerical rank deficiency, where the rank of the matrix cannot be | |
// predicted by its sparsity structure and requires looking at its | |
// numerical values is more complicated. Here again there are two | |
// cases. | |
// | |
// a. The rank deficiency arises from overparameterization. e.g., a | |
// four dimensional quaternion used to parameterize SO(3), which is | |
// a three dimensional manifold. In cases like this, the user should | |
// use an appropriate LocalParameterization/Manifold. Not only will this lead | |
// to better numerical behaviour of the Solver, it will also expose | |
// the rank deficiency to the Covariance object so that it can | |
// handle it correctly. | |
// | |
// b. More general numerical rank deficiency in the Jacobian | |
// requires the computation of the so called Singular Value | |
// Decomposition (SVD) of J'J. We do not know how to do this for | |
// large sparse matrices efficiently. For small and moderate sized | |
// problems this is done using dense linear algebra. | |
// | |
// Gauge Invariance | |
// ---------------- | |
// In structure from motion (3D reconstruction) problems, the | |
// reconstruction is ambiguous up to a similarity transform. This is | |
// known as a Gauge Ambiguity. Handling Gauges correctly requires the | |
// use of SVD or custom inversion algorithms. For small problems the | |
// user can use the dense algorithm. For more details see | |
// | |
// Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge | |
// transformations for uncertainty description of geometric structure | |
// with indeterminacy. IEEE Transactions on Information Theory 47(5): | |
// 2017-2028 (2001) | |
// | |
// Example Usage | |
// ============= | |
// | |
// double x[3]; | |
// double y[2]; | |
// | |
// Problem problem; | |
// problem.AddParameterBlock(x, 3); | |
// problem.AddParameterBlock(y, 2); | |
// <Build Problem> | |
// <Solve Problem> | |
// | |
// Covariance::Options options; | |
// Covariance covariance(options); | |
// | |
// std::vector<std::pair<const double*, const double*>> covariance_blocks; | |
// covariance_blocks.push_back(make_pair(x, x)); | |
// covariance_blocks.push_back(make_pair(y, y)); | |
// covariance_blocks.push_back(make_pair(x, y)); | |
// | |
// CHECK(covariance.Compute(covariance_blocks, &problem)); | |
// | |
// double covariance_xx[3 * 3]; | |
// double covariance_yy[2 * 2]; | |
// double covariance_xy[3 * 2]; | |
// covariance.GetCovarianceBlock(x, x, covariance_xx) | |
// covariance.GetCovarianceBlock(y, y, covariance_yy) | |
// covariance.GetCovarianceBlock(x, y, covariance_xy) | |
// | |
class CERES_EXPORT Covariance { | |
public: | |
struct CERES_EXPORT Options { | |
// Sparse linear algebra library to use when a sparse matrix | |
// factorization is being used to compute the covariance matrix. | |
// | |
// Currently this only applies to SPARSE_QR. | |
SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type = | |
SUITE_SPARSE; | |
// Eigen's QR factorization is always available. | |
EIGEN_SPARSE; | |
// Ceres supports two different algorithms for covariance | |
// estimation, which represent different tradeoffs in speed, | |
// accuracy and reliability. | |
// | |
// 1. DENSE_SVD uses Eigen's JacobiSVD to perform the | |
// computations. It computes the singular value decomposition | |
// | |
// U * D * V' = J | |
// | |
// and then uses it to compute the pseudo inverse of J'J as | |
// | |
// pseudoinverse[J'J] = V * pseudoinverse[D^2] * V' | |
// | |
// It is an accurate but slow method and should only be used | |
// for small to moderate sized problems. It can handle | |
// full-rank as well as rank deficient Jacobians. | |
// | |
// 2. SPARSE_QR uses the sparse QR factorization algorithm | |
// to compute the decomposition | |
// | |
// Q * R = J | |
// | |
// [J'J]^-1 = [R'*R]^-1 | |
// | |
// SPARSE_QR is not capable of computing the covariance if the | |
// Jacobian is rank deficient. Depending on the value of | |
// Covariance::Options::sparse_linear_algebra_library_type, either | |
// Eigen's Sparse QR factorization algorithm will be used or | |
// SuiteSparse's high performance SuiteSparseQR algorithm will be | |
// used. | |
CovarianceAlgorithmType algorithm_type = SPARSE_QR; | |
// If the Jacobian matrix is near singular, then inverting J'J | |
// will result in unreliable results, e.g, if | |
// | |
// J = [1.0 1.0 ] | |
// [1.0 1.0000001 ] | |
// | |
// which is essentially a rank deficient matrix, we have | |
// | |
// inv(J'J) = [ 2.0471e+14 -2.0471e+14] | |
// [-2.0471e+14 2.0471e+14] | |
// | |
// This is not a useful result. Therefore, by default | |
// Covariance::Compute will return false if a rank deficient | |
// Jacobian is encountered. How rank deficiency is detected | |
// depends on the algorithm being used. | |
// | |
// 1. DENSE_SVD | |
// | |
// min_sigma / max_sigma < sqrt(min_reciprocal_condition_number) | |
// | |
// where min_sigma and max_sigma are the minimum and maxiumum | |
// singular values of J respectively. | |
// | |
// 2. SPARSE_QR | |
// | |
// rank(J) < num_col(J) | |
// | |
// Here rank(J) is the estimate of the rank of J returned by the | |
// sparse QR factorization algorithm. It is a fairly reliable | |
// indication of rank deficiency. | |
// | |
double min_reciprocal_condition_number = 1e-14; | |
// When using DENSE_SVD, the user has more control in dealing with | |
// singular and near singular covariance matrices. | |
// | |
// As mentioned above, when the covariance matrix is near | |
// singular, instead of computing the inverse of J'J, the | |
// Moore-Penrose pseudoinverse of J'J should be computed. | |
// | |
// If J'J has the eigen decomposition (lambda_i, e_i), where | |
// lambda_i is the i^th eigenvalue and e_i is the corresponding | |
// eigenvector, then the inverse of J'J is | |
// | |
// inverse[J'J] = sum_i e_i e_i' / lambda_i | |
// | |
// and computing the pseudo inverse involves dropping terms from | |
// this sum that correspond to small eigenvalues. | |
// | |
// How terms are dropped is controlled by | |
// min_reciprocal_condition_number and null_space_rank. | |
// | |
// If null_space_rank is non-negative, then the smallest | |
// null_space_rank eigenvalue/eigenvectors are dropped | |
// irrespective of the magnitude of lambda_i. If the ratio of the | |
// smallest non-zero eigenvalue to the largest eigenvalue in the | |
// truncated matrix is still below | |
// min_reciprocal_condition_number, then the Covariance::Compute() | |
// will fail and return false. | |
// | |
// Setting null_space_rank = -1 drops all terms for which | |
// | |
// lambda_i / lambda_max < min_reciprocal_condition_number. | |
// | |
// This option has no effect on the SUITE_SPARSE_QR and | |
// EIGEN_SPARSE_QR algorithms. | |
int null_space_rank = 0; | |
int num_threads = 1; | |
// Even though the residual blocks in the problem may contain loss | |
// functions, setting apply_loss_function to false will turn off | |
// the application of the loss function to the output of the cost | |
// function and in turn its effect on the covariance. | |
// | |
// TODO(sameergaarwal): Expand this based on Jim's experiments. | |
bool apply_loss_function = true; | |
}; | |
explicit Covariance(const Options& options); | |
~Covariance(); | |
// Compute a part of the covariance matrix. | |
// | |
// The vector covariance_blocks, indexes into the covariance matrix | |
// block-wise using pairs of parameter blocks. This allows the | |
// covariance estimation algorithm to only compute and store these | |
// blocks. | |
// | |
// Since the covariance matrix is symmetric, if the user passes | |
// (block1, block2), then GetCovarianceBlock can be called with | |
// block1, block2 as well as block2, block1. | |
// | |
// covariance_blocks cannot contain duplicates. Bad things will | |
// happen if they do. | |
// | |
// Note that the list of covariance_blocks is only used to determine | |
// what parts of the covariance matrix are computed. The full | |
// Jacobian is used to do the computation, i.e. they do not have an | |
// impact on what part of the Jacobian is used for computation. | |
// | |
// The return value indicates the success or failure of the | |
// covariance computation. Please see the documentation for | |
// Covariance::Options for more on the conditions under which this | |
// function returns false. | |
bool Compute(const std::vector<std::pair<const double*, const double*>>& | |
covariance_blocks, | |
Problem* problem); | |
// Compute a part of the covariance matrix. | |
// | |
// The vector parameter_blocks contains the parameter blocks that | |
// are used for computing the covariance matrix. From this vector | |
// all covariance pairs are generated. This allows the covariance | |
// estimation algorithm to only compute and store these blocks. | |
// | |
// parameter_blocks cannot contain duplicates. Bad things will | |
// happen if they do. | |
// | |
// Note that the list of covariance_blocks is only used to determine | |
// what parts of the covariance matrix are computed. The full | |
// Jacobian is used to do the computation, i.e. they do not have an | |
// impact on what part of the Jacobian is used for computation. | |
// | |
// The return value indicates the success or failure of the | |
// covariance computation. Please see the documentation for | |
// Covariance::Options for more on the conditions under which this | |
// function returns false. | |
bool Compute(const std::vector<const double*>& parameter_blocks, | |
Problem* problem); | |
// Return the block of the cross-covariance matrix corresponding to | |
// parameter_block1 and parameter_block2. | |
// | |
// Compute must be called before the first call to | |
// GetCovarianceBlock and the pair <parameter_block1, | |
// parameter_block2> OR the pair <parameter_block2, | |
// parameter_block1> must have been present in the vector | |
// covariance_blocks when Compute was called. Otherwise | |
// GetCovarianceBlock will return false. | |
// | |
// covariance_block must point to a memory location that can store a | |
// parameter_block1_size x parameter_block2_size matrix. The | |
// returned covariance will be a row-major matrix. | |
bool GetCovarianceBlock(const double* parameter_block1, | |
const double* parameter_block2, | |
double* covariance_block) const; | |
// Return the block of the cross-covariance matrix corresponding to | |
// parameter_block1 and parameter_block2. | |
// Returns cross-covariance in the tangent space if a local | |
// parameterization is associated with either parameter block; | |
// else returns cross-covariance in the ambient space. | |
// | |
// Compute must be called before the first call to | |
// GetCovarianceBlock and the pair <parameter_block1, | |
// parameter_block2> OR the pair <parameter_block2, | |
// parameter_block1> must have been present in the vector | |
// covariance_blocks when Compute was called. Otherwise | |
// GetCovarianceBlock will return false. | |
// | |
// covariance_block must point to a memory location that can store a | |
// parameter_block1_local_size x parameter_block2_local_size matrix. The | |
// returned covariance will be a row-major matrix. | |
bool GetCovarianceBlockInTangentSpace(const double* parameter_block1, | |
const double* parameter_block2, | |
double* covariance_block) const; | |
// Return the covariance matrix corresponding to all parameter_blocks. | |
// | |
// Compute must be called before calling GetCovarianceMatrix and all | |
// parameter_blocks must have been present in the vector | |
// parameter_blocks when Compute was called. Otherwise | |
// GetCovarianceMatrix returns false. | |
// | |
// covariance_matrix must point to a memory location that can store | |
// the size of the covariance matrix. The covariance matrix will be | |
// a square matrix whose row and column count is equal to the sum of | |
// the sizes of the individual parameter blocks. The covariance | |
// matrix will be a row-major matrix. | |
bool GetCovarianceMatrix(const std::vector<const double*>& parameter_blocks, | |
double* covariance_matrix) const; | |
// Return the covariance matrix corresponding to parameter_blocks | |
// in the tangent space if a local parameterization is associated | |
// with one of the parameter blocks else returns the covariance | |
// matrix in the ambient space. | |
// | |
// Compute must be called before calling GetCovarianceMatrix and all | |
// parameter_blocks must have been present in the vector | |
// parameters_blocks when Compute was called. Otherwise | |
// GetCovarianceMatrix returns false. | |
// | |
// covariance_matrix must point to a memory location that can store | |
// the size of the covariance matrix. The covariance matrix will be | |
// a square matrix whose row and column count is equal to the sum of | |
// the sizes of the tangent spaces of the individual parameter | |
// blocks. The covariance matrix will be a row-major matrix. | |
bool GetCovarianceMatrixInTangentSpace( | |
const std::vector<const double*>& parameter_blocks, | |
double* covariance_matrix) const; | |
private: | |
std::unique_ptr<internal::CovarianceImpl> impl_; | |
}; | |
} // namespace ceres | |