// Ceres Solver - A fast non-linear least squares minimizer | |
// Copyright 2022 Google Inc. All rights reserved. | |
// http://ceres-solver.org/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// * Neither the name of Google Inc. nor the names of its contributors may be | |
// used to endorse or promote products derived from this software without | |
// specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: sameeragarwal@google.com (Sameer Agarwal) | |
namespace ceres { | |
// Create a Manifold with Jacobians computed via automatic differentiation. For | |
// more information on manifolds, see include/ceres/manifold.h | |
// | |
// To get an auto differentiated manifold, you must define a class/struct with | |
// templated Plus and Minus functions that compute | |
// | |
// x_plus_delta = Plus(x, delta); | |
// y_minus_x = Minus(y, x); | |
// | |
// Where, x, y and x_plus_y are vectors on the manifold in the ambient space (so | |
// they are kAmbientSize vectors) and delta, y_minus_x are vectors in the | |
// tangent space (so they are kTangentSize vectors). | |
// | |
// The Functor should have the signature: | |
// | |
// struct Functor { | |
// template <typename T> | |
// bool Plus(const T* x, const T* delta, T* x_plus_delta) const; | |
// | |
// template <typename T> | |
// bool Minus(const T* y, const T* x, T* y_minus_x) const; | |
// }; | |
// | |
// Observe that the Plus and Minus operations are templated on the parameter T. | |
// The autodiff framework substitutes appropriate "Jet" objects for T in order | |
// to compute the derivative when necessary. This is the same mechanism that is | |
// used to compute derivatives when using AutoDiffCostFunction. | |
// | |
// Plus and Minus should return true if the computation is successful and false | |
// otherwise, in which case the result will not be used. | |
// | |
// Given this Functor, the corresponding Manifold can be constructed as: | |
// | |
// AutoDiffManifold<Functor, kAmbientSize, kTangentSize> manifold; | |
// | |
// As a concrete example consider the case of Quaternions. Quaternions form a | |
// three dimensional manifold embedded in R^4, i.e. they have an ambient | |
// dimension of 4 and their tangent space has dimension 3. The following Functor | |
// (taken from autodiff_manifold_test.cc) defines the Plus and Minus operations | |
// on the Quaternion manifold: | |
// | |
// NOTE: The following is only used for illustration purposes. Ceres Solver | |
// ships with optimized production grade QuaternionManifold implementation. See | |
// manifold.h. | |
// | |
// This functor assumes that the quaternions are laid out as [w,x,y,z] in | |
// memory, i.e. the real or scalar part is the first coordinate. | |
// | |
// struct QuaternionFunctor { | |
// template <typename T> | |
// bool Plus(const T* x, const T* delta, T* x_plus_delta) const { | |
// const T squared_norm_delta = | |
// delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; | |
// | |
// T q_delta[4]; | |
// if (squared_norm_delta > T(0.0)) { | |
// T norm_delta = sqrt(squared_norm_delta); | |
// const T sin_delta_by_delta = sin(norm_delta) / norm_delta; | |
// q_delta[0] = cos(norm_delta); | |
// q_delta[1] = sin_delta_by_delta * delta[0]; | |
// q_delta[2] = sin_delta_by_delta * delta[1]; | |
// q_delta[3] = sin_delta_by_delta * delta[2]; | |
// } else { | |
// // We do not just use q_delta = [1,0,0,0] here because that is a | |
// // constant and when used for automatic differentiation will | |
// // lead to a zero derivative. Instead we take a first order | |
// // approximation and evaluate it at zero. | |
// q_delta[0] = T(1.0); | |
// q_delta[1] = delta[0]; | |
// q_delta[2] = delta[1]; | |
// q_delta[3] = delta[2]; | |
// } | |
// | |
// QuaternionProduct(q_delta, x, x_plus_delta); | |
// return true; | |
// } | |
// | |
// template <typename T> | |
// bool Minus(const T* y, const T* x, T* y_minus_x) const { | |
// T minus_x[4] = {x[0], -x[1], -x[2], -x[3]}; | |
// T ambient_y_minus_x[4]; | |
// QuaternionProduct(y, minus_x, ambient_y_minus_x); | |
// T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] + | |
// ambient_y_minus_x[2] * ambient_y_minus_x[2] + | |
// ambient_y_minus_x[3] * ambient_y_minus_x[3]); | |
// if (u_norm > 0.0) { | |
// T theta = atan2(u_norm, ambient_y_minus_x[0]); | |
// y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm; | |
// y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm; | |
// y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm; | |
// } else { | |
// // We do not use [0,0,0] here because even though the value part is | |
// // a constant, the derivative part is not. | |
// y_minus_x[0] = ambient_y_minus_x[1]; | |
// y_minus_x[1] = ambient_y_minus_x[2]; | |
// y_minus_x[2] = ambient_y_minus_x[3]; | |
// } | |
// return true; | |
// } | |
// }; | |
// | |
// Then given this struct, the auto differentiated Quaternion Manifold can now | |
// be constructed as | |
// | |
// Manifold* manifold = new AutoDiffManifold<QuaternionFunctor, 4, 3>; | |
template <typename Functor, int kAmbientSize, int kTangentSize> | |
class AutoDiffManifold final : public Manifold { | |
public: | |
AutoDiffManifold() : functor_(std::make_unique<Functor>()) {} | |
// Takes ownership of functor. | |
explicit AutoDiffManifold(Functor* functor) : functor_(functor) {} | |
int AmbientSize() const override { return kAmbientSize; } | |
int TangentSize() const override { return kTangentSize; } | |
bool Plus(const double* x, | |
const double* delta, | |
double* x_plus_delta) const override { | |
return functor_->Plus(x, delta, x_plus_delta); | |
} | |
bool PlusJacobian(const double* x, double* jacobian) const override; | |
bool Minus(const double* y, | |
const double* x, | |
double* y_minus_x) const override { | |
return functor_->Minus(y, x, y_minus_x); | |
} | |
bool MinusJacobian(const double* x, double* jacobian) const override; | |
const Functor& functor() const { return *functor_; } | |
private: | |
std::unique_ptr<Functor> functor_; | |
}; | |
namespace internal { | |
// The following two helper structs are needed to interface the Plus and Minus | |
// methods of the ManifoldFunctor with the automatic differentiation which | |
// expects a Functor with operator(). | |
template <typename Functor> | |
struct PlusWrapper { | |
explicit PlusWrapper(const Functor& functor) : functor(functor) {} | |
template <typename T> | |
bool operator()(const T* x, const T* delta, T* x_plus_delta) const { | |
return functor.Plus(x, delta, x_plus_delta); | |
} | |
const Functor& functor; | |
}; | |
template <typename Functor> | |
struct MinusWrapper { | |
explicit MinusWrapper(const Functor& functor) : functor(functor) {} | |
template <typename T> | |
bool operator()(const T* y, const T* x, T* y_minus_x) const { | |
return functor.Minus(y, x, y_minus_x); | |
} | |
const Functor& functor; | |
}; | |
} // namespace internal | |
template <typename Functor, int kAmbientSize, int kTangentSize> | |
bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::PlusJacobian( | |
const double* x, double* jacobian) const { | |
double zero_delta[kTangentSize]; | |
for (int i = 0; i < kTangentSize; ++i) { | |
zero_delta[i] = 0.0; | |
} | |
double x_plus_delta[kAmbientSize]; | |
for (int i = 0; i < kAmbientSize; ++i) { | |
x_plus_delta[i] = 0.0; | |
} | |
const double* parameter_ptrs[2] = {x, zero_delta}; | |
// PlusJacobian is D_2 Plus(x,0) so we only need to compute the Jacobian | |
// w.r.t. the second argument. | |
double* jacobian_ptrs[2] = {nullptr, jacobian}; | |
return internal::AutoDifferentiate< | |
kAmbientSize, | |
internal::StaticParameterDims<kAmbientSize, kTangentSize>>( | |
internal::PlusWrapper<Functor>(*functor_), | |
parameter_ptrs, | |
kAmbientSize, | |
x_plus_delta, | |
jacobian_ptrs); | |
} | |
template <typename Functor, int kAmbientSize, int kTangentSize> | |
bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::MinusJacobian( | |
const double* x, double* jacobian) const { | |
double y_minus_x[kTangentSize]; | |
for (int i = 0; i < kTangentSize; ++i) { | |
y_minus_x[i] = 0.0; | |
} | |
const double* parameter_ptrs[2] = {x, x}; | |
// MinusJacobian is D_1 Minus(x,x), so we only need to compute the Jacobian | |
// w.r.t. the first argument. | |
double* jacobian_ptrs[2] = {jacobian, nullptr}; | |
return internal::AutoDifferentiate< | |
kTangentSize, | |
internal::StaticParameterDims<kAmbientSize, kAmbientSize>>( | |
internal::MinusWrapper<Functor>(*functor_), | |
parameter_ptrs, | |
kTangentSize, | |
y_minus_x, | |
jacobian_ptrs); | |
} | |
} // namespace ceres | |