// Ceres Solver - A fast non-linear least squares minimizer | |
// Copyright 2019 Google Inc. All rights reserved. | |
// http://ceres-solver.org/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// | |
// * Redistributions of source code must retain the above copyright notice, | |
// this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright notice, | |
// this list of conditions and the following disclaimer in the documentation | |
// and/or other materials provided with the distribution. | |
// * Neither the name of Google Inc. nor the names of its contributors may be | |
// used to endorse or promote products derived from this software without | |
// specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
// POSSIBILITY OF SUCH DAMAGE. | |
// | |
// Author: sameeragarwal@google.com (Sameer Agarwal) | |
namespace ceres { | |
// Create FirstOrderFunctions as needed by the GradientProblem | |
// framework, with gradients computed via automatic | |
// differentiation. For more information on automatic differentiation, | |
// see the wikipedia article at | |
// http://en.wikipedia.org/wiki/Automatic_differentiation | |
// | |
// To get an auto differentiated function, you must define a class | |
// with a templated operator() (a functor) that computes the cost | |
// function in terms of the template parameter T. The autodiff | |
// framework substitutes appropriate "jet" objects for T in order to | |
// compute the derivative when necessary, but this is hidden, and you | |
// should write the function as if T were a scalar type (e.g. a | |
// double-precision floating point number). | |
// | |
// The function must write the computed value in the last argument | |
// (the only non-const one) and return true to indicate | |
// success. | |
// | |
// For example, consider a scalar error e = x'y - a, where both x and y are | |
// two-dimensional column vector parameters, the prime sign indicates | |
// transposition, and a is a constant. | |
// | |
// To write an auto-differentiable FirstOrderFunction for the above model, first | |
// define the object | |
// | |
// class QuadraticCostFunctor { | |
// public: | |
// explicit QuadraticCostFunctor(double a) : a_(a) {} | |
// template <typename T> | |
// bool operator()(const T* const xy, T* cost) const { | |
// const T* const x = xy; | |
// const T* const y = xy + 2; | |
// *cost = x[0] * y[0] + x[1] * y[1] - T(a_); | |
// return true; | |
// } | |
// | |
// private: | |
// double a_; | |
// }; | |
// | |
// Note that in the declaration of operator() the input parameters xy come | |
// first, and are passed as const pointers to arrays of T. The | |
// output is the last parameter. | |
// | |
// Then given this class definition, the auto differentiated FirstOrderFunction | |
// for it can be constructed as follows. | |
// | |
// FirstOrderFunction* function = | |
// new AutoDiffFirstOrderFunction<QuadraticCostFunctor, 4>( | |
// new QuadraticCostFunctor(1.0))); | |
// | |
// In the instantiation above, the template parameters following | |
// "QuadraticCostFunctor", "4", describe the functor as computing a | |
// 1-dimensional output from a four dimensional vector. | |
// | |
// WARNING: Since the functor will get instantiated with different types for | |
// T, you must convert from other numeric types to T before mixing | |
// computations with other variables of type T. In the example above, this is | |
// seen where instead of using a_ directly, a_ is wrapped with T(a_). | |
template <typename FirstOrderFunctor, int kNumParameters> | |
class AutoDiffFirstOrderFunction final : public FirstOrderFunction { | |
public: | |
// Takes ownership of functor. | |
explicit AutoDiffFirstOrderFunction(FirstOrderFunctor* functor) | |
: functor_(functor) { | |
static_assert(kNumParameters > 0, "kNumParameters must be positive"); | |
} | |
bool Evaluate(const double* const parameters, | |
double* cost, | |
double* gradient) const override { | |
if (gradient == nullptr) { | |
return (*functor_)(parameters, cost); | |
} | |
using JetT = Jet<double, kNumParameters>; | |
internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(kNumParameters); | |
for (int i = 0; i < kNumParameters; ++i) { | |
x[i].a = parameters[i]; | |
x[i].v.setZero(); | |
x[i].v[i] = 1.0; | |
} | |
JetT output; | |
output.a = kImpossibleValue; | |
output.v.setConstant(kImpossibleValue); | |
if (!(*functor_)(x.data(), &output)) { | |
return false; | |
} | |
*cost = output.a; | |
VectorRef(gradient, kNumParameters) = output.v; | |
return true; | |
} | |
int NumParameters() const override { return kNumParameters; } | |
const FirstOrderFunctor& functor() const { return *functor_; } | |
private: | |
std::unique_ptr<FirstOrderFunctor> functor_; | |
}; | |
} // namespace ceres | |