camenduru commited on
Commit
f406ede
1 Parent(s): 8cbfd61

thanks to One-2-3-45 ❤

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +4 -0
  2. README.md +34 -0
  3. SparseNeuS_demo_v1/confs/one2345_lod0_val_demo.conf +135 -0
  4. SparseNeuS_demo_v1/data/blender_general_narrow_all_eval_new_data.py +394 -0
  5. SparseNeuS_demo_v1/data/scene.py +101 -0
  6. SparseNeuS_demo_v1/exp/lod0/.gitignore +1 -0
  7. SparseNeuS_demo_v1/exp/lod0/checkpoints/ckpt_215000.pth +3 -0
  8. SparseNeuS_demo_v1/exp_runner_generic_blender_val.py +629 -0
  9. SparseNeuS_demo_v1/loss/__init__.py +0 -0
  10. SparseNeuS_demo_v1/loss/color_loss.py +152 -0
  11. SparseNeuS_demo_v1/loss/depth_loss.py +71 -0
  12. SparseNeuS_demo_v1/loss/depth_metric.py +240 -0
  13. SparseNeuS_demo_v1/loss/ncc.py +65 -0
  14. SparseNeuS_demo_v1/models/__init__.py +0 -0
  15. SparseNeuS_demo_v1/models/embedder.py +101 -0
  16. SparseNeuS_demo_v1/models/fast_renderer.py +316 -0
  17. SparseNeuS_demo_v1/models/featurenet.py +91 -0
  18. SparseNeuS_demo_v1/models/fields.py +333 -0
  19. SparseNeuS_demo_v1/models/patch_projector.py +211 -0
  20. SparseNeuS_demo_v1/models/projector.py +425 -0
  21. SparseNeuS_demo_v1/models/rays.py +320 -0
  22. SparseNeuS_demo_v1/models/render_utils.py +120 -0
  23. SparseNeuS_demo_v1/models/rendering_network.py +129 -0
  24. SparseNeuS_demo_v1/models/sparse_neus_renderer.py +985 -0
  25. SparseNeuS_demo_v1/models/sparse_sdf_network.py +907 -0
  26. SparseNeuS_demo_v1/models/trainer_generic.py +1207 -0
  27. SparseNeuS_demo_v1/ops/__init__.py +0 -0
  28. SparseNeuS_demo_v1/ops/back_project.py +175 -0
  29. SparseNeuS_demo_v1/ops/generate_grids.py +33 -0
  30. SparseNeuS_demo_v1/ops/grid_sampler.py +467 -0
  31. SparseNeuS_demo_v1/tsparse/__init__.py +0 -0
  32. SparseNeuS_demo_v1/tsparse/modules.py +326 -0
  33. SparseNeuS_demo_v1/tsparse/torchsparse_utils.py +137 -0
  34. SparseNeuS_demo_v1/utils/__init__.py +0 -0
  35. SparseNeuS_demo_v1/utils/misc_utils.py +219 -0
  36. configs/sd-objaverse-finetune-c_concat-256.yaml +117 -0
  37. ldm/data/__init__.py +0 -0
  38. ldm/data/base.py +40 -0
  39. ldm/data/coco.py +253 -0
  40. ldm/data/dummy.py +34 -0
  41. ldm/data/imagenet.py +394 -0
  42. ldm/data/inpainting/__init__.py +0 -0
  43. ldm/data/inpainting/synthetic_mask.py +166 -0
  44. ldm/data/laion.py +537 -0
  45. ldm/data/lsun.py +92 -0
  46. ldm/data/nerf_like.py +165 -0
  47. ldm/data/simple.py +526 -0
  48. ldm/extras.py +77 -0
  49. ldm/guidance.py +96 -0
  50. ldm/lr_scheduler.py +98 -0
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ __pycache__/
2
+ *.DS_Store
3
+ *.ipynb
4
+ *.egg-info/
README.md ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+
6
+ # One-2-3-45's Inference Model
7
+
8
+ <div>
9
+ <a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
10
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
11
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/One-2-3-45/One-2-3-45'><img src='https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social' /></a>
12
+ </div>
13
+
14
+ This inference model supports the demo for [One-2-3-45](http://One-2-3-45.com).
15
+
16
+ Try out our 🤗 Hugging Face Demo:
17
+ <a target="_blank" href="https://huggingface.co/spaces/One-2-3-45/One-2-3-45">
18
+ <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
19
+ </a>
20
+
21
+ Please refer to our [GitHub repo](https://github.com/One-2-3-45/One-2-3-45) for full code release and local deployment.
22
+
23
+ ## Citation
24
+
25
+ ```bibtex
26
+ @misc{liu2023one2345,
27
+ title={One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization},
28
+ author={Minghua Liu and Chao Xu and Haian Jin and Linghao Chen and Mukund Varma T and Zexiang Xu and Hao Su},
29
+ year={2023},
30
+ eprint={2306.16928},
31
+ archivePrefix={arXiv},
32
+ primaryClass={cs.CV}
33
+ }
34
+ ```
SparseNeuS_demo_v1/confs/one2345_lod0_val_demo.conf ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # - for the lod1 geometry network, using adaptive cost for sparse cost regularization network
2
+ #- for lod1 rendering network, using depth-adaptive render
3
+
4
+ general {
5
+
6
+ base_exp_dir = exp/lod0 # !!! where you store the results and checkpoints to be used
7
+ recording = [
8
+ ./,
9
+ ./data
10
+ ./ops
11
+ ./models
12
+ ./loss
13
+ ]
14
+ }
15
+
16
+ dataset {
17
+ trainpath = ../
18
+ valpath = ../ # !!! where you store the validation data
19
+ testpath = ../
20
+
21
+ imgScale_train = 1.0
22
+ imgScale_test = 1.0
23
+ nviews = 5
24
+ clean_image = True
25
+ importance_sample = True
26
+ test_ref_views = [23]
27
+
28
+ # test dataset
29
+ test_n_views = 2
30
+ test_img_wh = [256, 256]
31
+ test_clip_wh = [0, 0]
32
+ test_scan_id = scan110
33
+ train_img_idx = [49, 50, 52, 53, 54, 56, 58] #[21, 22, 23, 24, 25] #
34
+ test_img_idx = [51, 55, 57] #[32, 33, 34] #
35
+
36
+ test_dir_comment = train
37
+ }
38
+
39
+ train {
40
+ learning_rate = 2e-4
41
+ learning_rate_milestone = [100000, 150000, 200000]
42
+ learning_rate_factor = 0.5
43
+ end_iter = 200000
44
+ save_freq = 5000
45
+ val_freq = 1
46
+ val_mesh_freq = 1
47
+ report_freq = 100
48
+
49
+ N_rays = 512
50
+
51
+ validate_resolution_level = 4
52
+ anneal_start = 0
53
+ anneal_end = 25000
54
+ anneal_start_lod1 = 0
55
+ anneal_end_lod1 = 15000
56
+
57
+ use_white_bkgd = True
58
+
59
+ # Loss
60
+ # ! for training the lod1 network, don't use this regularization in first 10k steps; then use the regularization
61
+ sdf_igr_weight = 0.1
62
+ sdf_sparse_weight = 0.02 # 0.002 for lod1 network; 0.02 for lod0 network
63
+ sdf_decay_param = 100 # cannot be too large, which decide the tsdf range
64
+ fg_bg_weight = 0.01 # first 0.01
65
+ bg_ratio = 0.3
66
+
67
+ if_fix_lod0_networks = False
68
+ }
69
+
70
+ model {
71
+ num_lods = 1
72
+
73
+ sdf_network_lod0 {
74
+ lod = 0,
75
+ ch_in = 56, # the channel num of fused pyramid features
76
+ voxel_size = 0.02105263, # 0.02083333, should be 2/95
77
+ vol_dims = [96, 96, 96],
78
+ hidden_dim = 128,
79
+ cost_type = variance_mean
80
+ d_pyramid_feature_compress = 16,
81
+ regnet_d_out = 16,
82
+ num_sdf_layers = 4,
83
+ # position embedding
84
+ multires = 6
85
+ }
86
+
87
+
88
+ sdf_network_lod1 {
89
+ lod = 1,
90
+ ch_in = 56, # the channel num of fused pyramid features
91
+ voxel_size = 0.0104712, #0.01041667, should be 2/191
92
+ vol_dims = [192, 192, 192],
93
+ hidden_dim = 128,
94
+ cost_type = variance_mean
95
+ d_pyramid_feature_compress = 8,
96
+ regnet_d_out = 16,
97
+ num_sdf_layers = 4,
98
+
99
+ # position embedding
100
+ multires = 6
101
+ }
102
+
103
+
104
+ variance_network {
105
+ init_val = 0.2
106
+ }
107
+
108
+ variance_network_lod1 {
109
+ init_val = 0.2
110
+ }
111
+
112
+ rendering_network {
113
+ in_geometry_feat_ch = 16
114
+ in_rendering_feat_ch = 56
115
+ anti_alias_pooling = True
116
+ }
117
+
118
+ rendering_network_lod1 {
119
+ in_geometry_feat_ch = 16 # default 8
120
+ in_rendering_feat_ch = 56
121
+ anti_alias_pooling = True
122
+
123
+ }
124
+
125
+
126
+ trainer {
127
+ n_samples_lod0 = 64
128
+ n_importance_lod0 = 64
129
+ n_samples_lod1 = 64
130
+ n_importance_lod1 = 64
131
+ n_outside = 0 # 128 if render_outside_uniform_sampling
132
+ perturb = 1.0
133
+ alpha_type = div
134
+ }
135
+ }
SparseNeuS_demo_v1/data/blender_general_narrow_all_eval_new_data.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data import Dataset
2
+ import os
3
+ import json
4
+ import numpy as np
5
+ import cv2
6
+ from PIL import Image
7
+ import torch
8
+ from torchvision import transforms as T
9
+ from data.scene import get_boundingbox
10
+
11
+ from models.rays import gen_rays_from_single_image, gen_random_rays_from_single_image
12
+ from kornia import create_meshgrid
13
+
14
+ def get_ray_directions(H, W, focal, center=None):
15
+ """
16
+ Get ray directions for all pixels in camera coordinate.
17
+ Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
18
+ ray-tracing-generating-camera-rays/standard-coordinate-systems
19
+ Inputs:
20
+ H, W, focal: image height, width and focal length
21
+ Outputs:
22
+ directions: (H, W, 3), the direction of the rays in camera coordinate
23
+ """
24
+ grid = create_meshgrid(H, W, normalized_coordinates=False)[0] + 0.5 # 1xHxWx2
25
+
26
+ i, j = grid.unbind(-1)
27
+ # the direction here is without +0.5 pixel centering as calibration is not so accurate
28
+ # see https://github.com/bmild/nerf/issues/24
29
+ cent = center if center is not None else [W / 2, H / 2]
30
+ directions = torch.stack([(i - cent[0]) / focal[0], (j - cent[1]) / focal[1], torch.ones_like(i)], -1) # (H, W, 3)
31
+
32
+ return directions
33
+
34
+ def load_K_Rt_from_P(filename, P=None):
35
+ if P is None:
36
+ lines = open(filename).read().splitlines()
37
+ if len(lines) == 4:
38
+ lines = lines[1:]
39
+ lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
40
+ P = np.asarray(lines).astype(np.float32).squeeze()
41
+
42
+ out = cv2.decomposeProjectionMatrix(P)
43
+ K = out[0]
44
+ R = out[1]
45
+ t = out[2]
46
+
47
+ K = K / K[2, 2]
48
+ intrinsics = np.eye(4)
49
+ intrinsics[:3, :3] = K
50
+
51
+ pose = np.eye(4, dtype=np.float32)
52
+ pose[:3, :3] = R.transpose() # ? why need transpose here
53
+ pose[:3, 3] = (t[:3] / t[3])[:, 0]
54
+
55
+ return intrinsics, pose # ! return cam2world matrix here
56
+
57
+
58
+ # ! load one ref-image with multiple src-images in camera coordinate system
59
+ class BlenderPerView(Dataset):
60
+ def __init__(self, root_dir, split, n_views=3, img_wh=(256, 256), downSample=1.0,
61
+ split_filepath=None, pair_filepath=None,
62
+ N_rays=512,
63
+ vol_dims=[128, 128, 128], batch_size=1,
64
+ clean_image=False, importance_sample=False, test_ref_views=[],
65
+ specific_dataset_name = 'GSO'
66
+ ):
67
+
68
+ # print("root_dir: ", root_dir)
69
+ self.root_dir = root_dir
70
+ self.split = split
71
+
72
+ self.specific_dataset_name = specific_dataset_name
73
+ self.n_views = n_views
74
+ self.N_rays = N_rays
75
+ self.batch_size = batch_size # - used for construct new metas for gru fusion training
76
+
77
+ self.clean_image = clean_image
78
+ self.importance_sample = importance_sample
79
+ self.test_ref_views = test_ref_views # used for testing
80
+ self.scale_factor = 1.0
81
+ self.scale_mat = np.float32(np.diag([1, 1, 1, 1.0]))
82
+ assert self.split == 'val' or 'export_mesh', 'only support val or export_mesh'
83
+ # find all subfolders
84
+ main_folder = os.path.join(root_dir, self.specific_dataset_name)
85
+ self.shape_list = [""] # os.listdir(main_folder) # MODIFIED
86
+ self.shape_list.sort()
87
+
88
+ # self.shape_list = ['barrel_render']
89
+ # self.shape_list = ["barrel", "bag", "mailbox", "shoe", "chair", "car", "dog", "teddy"] # TO BE DELETED
90
+
91
+
92
+ self.lvis_paths = []
93
+ for shape_name in self.shape_list:
94
+ self.lvis_paths.append(os.path.join(main_folder, shape_name))
95
+
96
+ if img_wh is not None:
97
+ assert img_wh[0] % 32 == 0 and img_wh[1] % 32 == 0, \
98
+ 'img_wh must both be multiples of 32!'
99
+
100
+
101
+ # * bounding box for rendering
102
+ self.bbox_min = np.array([-1.0, -1.0, -1.0])
103
+ self.bbox_max = np.array([1.0, 1.0, 1.0])
104
+
105
+ # - used for cost volume regularization
106
+ self.voxel_dims = torch.tensor(vol_dims, dtype=torch.float32)
107
+ self.partial_vol_origin = torch.tensor([-1., -1., -1.], dtype=torch.float32)
108
+
109
+
110
+ def define_transforms(self):
111
+ self.transform = T.Compose([T.ToTensor()])
112
+
113
+
114
+
115
+ def load_cam_info(self):
116
+ for vid, img_id in enumerate(self.img_ids):
117
+ intrinsic, extrinsic, near_far = self.intrinsic, np.linalg.inv(self.c2ws[vid]), self.near_far
118
+ self.all_intrinsics.append(intrinsic)
119
+ self.all_extrinsics.append(extrinsic)
120
+ self.all_near_fars.append(near_far)
121
+
122
+ def read_mask(self, filename):
123
+ mask_h = cv2.imread(filename, 0)
124
+ mask_h = cv2.resize(mask_h, None, fx=self.downSample, fy=self.downSample,
125
+ interpolation=cv2.INTER_NEAREST)
126
+ mask = cv2.resize(mask_h, None, fx=0.25, fy=0.25,
127
+ interpolation=cv2.INTER_NEAREST)
128
+
129
+ mask[mask > 0] = 1 # the masks stored in png are not binary
130
+ mask_h[mask_h > 0] = 1
131
+
132
+ return mask, mask_h
133
+
134
+ def cal_scale_mat(self, img_hw, intrinsics, extrinsics, near_fars, factor=1.):
135
+
136
+ center, radius, bounds = get_boundingbox(img_hw, intrinsics, extrinsics, near_fars)
137
+
138
+ radius = radius * factor
139
+ scale_mat = np.diag([radius, radius, radius, 1.0])
140
+ scale_mat[:3, 3] = center.cpu().numpy()
141
+ scale_mat = scale_mat.astype(np.float32)
142
+
143
+ return scale_mat, 1. / radius.cpu().numpy()
144
+
145
+ def __len__(self):
146
+ # return 8*len(self.lvis_paths)
147
+ return len(self.lvis_paths)
148
+
149
+ def __getitem__(self, idx):
150
+ sample = {}
151
+ idx = idx * 8 # to be deleted
152
+ origin_idx = idx
153
+ imgs, depths_h, masks_h = [], [], [] # full size (256, 256)
154
+ intrinsics, w2cs, c2ws, near_fars = [], [], [], [] # record proj-mats between views
155
+
156
+ folder_path = self.lvis_paths[idx//8]
157
+ idx = idx % 8 # [0, 7]
158
+
159
+ # last subdir name
160
+ shape_name = os.path.split(folder_path)[-1]
161
+
162
+ pose_json_path = os.path.join(folder_path, "pose.json")
163
+ with open(pose_json_path, 'r') as f:
164
+ meta = json.load(f)
165
+
166
+ self.img_ids = list(meta["c2ws"].keys()) # e.g. "view_0", "view_7", "view_0_2_10"
167
+ self.img_wh = (256, 256)
168
+ self.input_poses = np.array(list(meta["c2ws"].values()))
169
+ intrinsic = np.eye(4)
170
+ intrinsic[:3, :3] = np.array(meta["intrinsics"])
171
+ self.intrinsic = intrinsic
172
+ self.near_far = np.array(meta["near_far"])
173
+ self.near_far[1] = 1.8
174
+ self.define_transforms()
175
+ self.blender2opencv = np.array(
176
+ [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
177
+ )
178
+
179
+ self.c2ws = []
180
+ self.w2cs = []
181
+ self.near_fars = []
182
+ for image_idx, img_id in enumerate(self.img_ids):
183
+ pose = self.input_poses[image_idx]
184
+ c2w = pose @ self.blender2opencv
185
+ self.c2ws.append(c2w)
186
+ self.w2cs.append(np.linalg.inv(c2w))
187
+ self.near_fars.append(self.near_far)
188
+ self.c2ws = np.stack(self.c2ws, axis=0)
189
+ self.w2cs = np.stack(self.w2cs, axis=0)
190
+
191
+
192
+ self.all_intrinsics = [] # the cam info of the whole scene
193
+ self.all_extrinsics = []
194
+ self.all_near_fars = []
195
+ self.load_cam_info()
196
+
197
+
198
+ # target view
199
+ c2w = self.c2ws[idx]
200
+ w2c = np.linalg.inv(c2w)
201
+ w2c_ref = w2c
202
+ w2c_ref_inv = np.linalg.inv(w2c_ref)
203
+
204
+ w2cs.append(w2c @ w2c_ref_inv)
205
+ c2ws.append(np.linalg.inv(w2c @ w2c_ref_inv))
206
+
207
+ img_filename = os.path.join(folder_path, 'stage1_8', f'{self.img_ids[idx]}')
208
+
209
+ img = Image.open(img_filename)
210
+ img = self.transform(img) # (4, h, w)
211
+
212
+
213
+ if img.shape[0] == 4:
214
+ img = img[:3] * img[-1:] + (1 - img[-1:]) # blend A to RGB
215
+ imgs += [img]
216
+
217
+
218
+ depth_h = torch.ones((img.shape[1], img.shape[2]), dtype=torch.float32)
219
+ depth_h = depth_h.fill_(-1.0)
220
+ mask_h = torch.ones((img.shape[1], img.shape[2]), dtype=torch.int32)
221
+
222
+
223
+ depths_h.append(depth_h)
224
+ masks_h.append(mask_h)
225
+
226
+ intrinsic = self.intrinsic
227
+ intrinsics.append(intrinsic)
228
+
229
+
230
+ near_fars.append(self.near_fars[idx])
231
+ image_perm = 0 # only supervised on reference view
232
+
233
+ mask_dilated = None
234
+
235
+
236
+ src_views = range(8, 8 + 8 * 4)
237
+
238
+ for vid in src_views:
239
+
240
+ img_filename = os.path.join(folder_path, 'stage2_8', f'{self.img_ids[vid]}')
241
+ img = Image.open(img_filename)
242
+ img_wh = self.img_wh
243
+
244
+ img = self.transform(img)
245
+ if img.shape[0] == 4:
246
+ img = img[:3] * img[-1:] + (1 - img[-1:]) # blend A to RGB
247
+
248
+ imgs += [img]
249
+ depth_h = np.ones(img.shape[1:], dtype=np.float32)
250
+ depths_h.append(depth_h)
251
+ masks_h.append(np.ones(img.shape[1:], dtype=np.int32))
252
+
253
+ near_fars.append(self.all_near_fars[vid])
254
+ intrinsics.append(self.all_intrinsics[vid])
255
+
256
+ w2cs.append(self.all_extrinsics[vid] @ w2c_ref_inv)
257
+
258
+
259
+ # ! estimate scale_mat
260
+ scale_mat, scale_factor = self.cal_scale_mat(
261
+ img_hw=[img_wh[1], img_wh[0]],
262
+ intrinsics=intrinsics, extrinsics=w2cs,
263
+ near_fars=near_fars, factor=1.1
264
+ )
265
+
266
+
267
+ new_near_fars = []
268
+ new_w2cs = []
269
+ new_c2ws = []
270
+ new_affine_mats = []
271
+ new_depths_h = []
272
+ for intrinsic, extrinsic, near_far, depth in zip(intrinsics, w2cs, near_fars, depths_h):
273
+
274
+ P = intrinsic @ extrinsic @ scale_mat
275
+ P = P[:3, :4]
276
+ # - should use load_K_Rt_from_P() to obtain c2w
277
+ c2w = load_K_Rt_from_P(None, P)[1]
278
+ w2c = np.linalg.inv(c2w)
279
+ new_w2cs.append(w2c)
280
+ new_c2ws.append(c2w)
281
+ affine_mat = np.eye(4)
282
+ affine_mat[:3, :4] = intrinsic[:3, :3] @ w2c[:3, :4]
283
+ new_affine_mats.append(affine_mat)
284
+
285
+ camera_o = c2w[:3, 3]
286
+ dist = np.sqrt(np.sum(camera_o ** 2))
287
+ near = dist - 1
288
+ far = dist + 1
289
+
290
+ new_near_fars.append([0.95 * near, 1.05 * far])
291
+ new_depths_h.append(depth * scale_factor)
292
+
293
+ imgs = torch.stack(imgs).float()
294
+ depths_h = np.stack(new_depths_h)
295
+ masks_h = np.stack(masks_h)
296
+
297
+ affine_mats = np.stack(new_affine_mats)
298
+ intrinsics, w2cs, c2ws, near_fars = np.stack(intrinsics), np.stack(new_w2cs), np.stack(new_c2ws), np.stack(
299
+ new_near_fars)
300
+
301
+ if self.split == 'train':
302
+ start_idx = 0
303
+ else:
304
+ start_idx = 1
305
+
306
+
307
+
308
+ target_w2cs = []
309
+ target_intrinsics = []
310
+ new_target_w2cs = []
311
+ for i_idx in range(8):
312
+ target_w2cs.append(self.all_extrinsics[i_idx] @ w2c_ref_inv)
313
+ target_intrinsics.append(self.all_intrinsics[i_idx])
314
+
315
+ for intrinsic, extrinsic in zip(target_intrinsics, target_w2cs):
316
+
317
+ P = intrinsic @ extrinsic @ scale_mat
318
+ P = P[:3, :4]
319
+ # - should use load_K_Rt_from_P() to obtain c2w
320
+ c2w = load_K_Rt_from_P(None, P)[1]
321
+ w2c = np.linalg.inv(c2w)
322
+ new_target_w2cs.append(w2c)
323
+ target_w2cs = np.stack(new_target_w2cs)
324
+
325
+
326
+
327
+ view_ids = [idx] + list(src_views)
328
+ sample['origin_idx'] = origin_idx
329
+ sample['images'] = imgs # (V, 3, H, W)
330
+ sample['depths_h'] = torch.from_numpy(depths_h.astype(np.float32)) # (V, H, W)
331
+ sample['masks_h'] = torch.from_numpy(masks_h.astype(np.float32)) # (V, H, W)
332
+ sample['w2cs'] = torch.from_numpy(w2cs.astype(np.float32)) # (V, 4, 4)
333
+ sample['c2ws'] = torch.from_numpy(c2ws.astype(np.float32)) # (V, 4, 4)
334
+ sample['target_candidate_w2cs'] = torch.from_numpy(target_w2cs.astype(np.float32)) # (8, 4, 4)
335
+ sample['near_fars'] = torch.from_numpy(near_fars.astype(np.float32)) # (V, 2)
336
+ sample['intrinsics'] = torch.from_numpy(intrinsics.astype(np.float32))[:, :3, :3] # (V, 3, 3)
337
+ sample['view_ids'] = torch.from_numpy(np.array(view_ids))
338
+ sample['affine_mats'] = torch.from_numpy(affine_mats.astype(np.float32)) # ! in world space
339
+
340
+ sample['scan'] = shape_name
341
+
342
+ sample['scale_factor'] = torch.tensor(scale_factor)
343
+ sample['img_wh'] = torch.from_numpy(np.array(img_wh))
344
+ sample['render_img_idx'] = torch.tensor(image_perm)
345
+ sample['partial_vol_origin'] = self.partial_vol_origin
346
+ sample['meta'] = str(self.specific_dataset_name) + '_' + str(shape_name) + "_refview" + str(view_ids[0])
347
+ # print("meta: ", sample['meta'])
348
+
349
+ # - image to render
350
+ sample['query_image'] = sample['images'][0]
351
+ sample['query_c2w'] = sample['c2ws'][0]
352
+ sample['query_w2c'] = sample['w2cs'][0]
353
+ sample['query_intrinsic'] = sample['intrinsics'][0]
354
+ sample['query_depth'] = sample['depths_h'][0]
355
+ sample['query_mask'] = sample['masks_h'][0]
356
+ sample['query_near_far'] = sample['near_fars'][0]
357
+
358
+ sample['images'] = sample['images'][start_idx:] # (V, 3, H, W)
359
+ sample['depths_h'] = sample['depths_h'][start_idx:] # (V, H, W)
360
+ sample['masks_h'] = sample['masks_h'][start_idx:] # (V, H, W)
361
+ sample['w2cs'] = sample['w2cs'][start_idx:] # (V, 4, 4)
362
+ sample['c2ws'] = sample['c2ws'][start_idx:] # (V, 4, 4)
363
+ sample['intrinsics'] = sample['intrinsics'][start_idx:] # (V, 3, 3)
364
+ sample['view_ids'] = sample['view_ids'][start_idx:]
365
+ sample['affine_mats'] = sample['affine_mats'][start_idx:] # ! in world space
366
+
367
+ sample['scale_mat'] = torch.from_numpy(scale_mat)
368
+ sample['trans_mat'] = torch.from_numpy(w2c_ref_inv)
369
+
370
+ # - generate rays
371
+ if ('val' in self.split) or ('test' in self.split):
372
+ sample_rays = gen_rays_from_single_image(
373
+ img_wh[1], img_wh[0],
374
+ sample['query_image'],
375
+ sample['query_intrinsic'],
376
+ sample['query_c2w'],
377
+ depth=sample['query_depth'],
378
+ mask=sample['query_mask'] if self.clean_image else None)
379
+ else:
380
+ sample_rays = gen_random_rays_from_single_image(
381
+ img_wh[1], img_wh[0],
382
+ self.N_rays,
383
+ sample['query_image'],
384
+ sample['query_intrinsic'],
385
+ sample['query_c2w'],
386
+ depth=sample['query_depth'],
387
+ mask=sample['query_mask'] if self.clean_image else None,
388
+ dilated_mask=mask_dilated,
389
+ importance_sample=self.importance_sample)
390
+
391
+
392
+ sample['rays'] = sample_rays
393
+
394
+ return sample
SparseNeuS_demo_v1/data/scene.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+
4
+
5
+ def rigid_transform(xyz, transform):
6
+ """Applies a rigid transform (c2w) to an (N, 3) pointcloud.
7
+ """
8
+ device = xyz.device
9
+ xyz_h = torch.cat([xyz, torch.ones((len(xyz), 1)).to(device)], dim=1) # (N, 4)
10
+ xyz_t_h = (transform @ xyz_h.T).T # * checked: the same with the below
11
+
12
+ return xyz_t_h[:, :3]
13
+
14
+
15
+ def get_view_frustum(min_depth, max_depth, size, cam_intr, c2w):
16
+ """Get corners of 3D camera view frustum of depth image
17
+ """
18
+ device = cam_intr.device
19
+ im_h, im_w = size
20
+ im_h = int(im_h)
21
+ im_w = int(im_w)
22
+ view_frust_pts = torch.stack([
23
+ (torch.tensor([0, 0, im_w, im_w, 0, 0, im_w, im_w]).to(device) - cam_intr[0, 2]) * torch.tensor(
24
+ [min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(device) /
25
+ cam_intr[0, 0],
26
+ (torch.tensor([0, im_h, 0, im_h, 0, im_h, 0, im_h]).to(device) - cam_intr[1, 2]) * torch.tensor(
27
+ [min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(device) /
28
+ cam_intr[1, 1],
29
+ torch.tensor([min_depth, min_depth, min_depth, min_depth, max_depth, max_depth, max_depth, max_depth]).to(
30
+ device)
31
+ ])
32
+ view_frust_pts = view_frust_pts.type(torch.float32)
33
+ c2w = c2w.type(torch.float32)
34
+ view_frust_pts = rigid_transform(view_frust_pts.T, c2w).T
35
+ return view_frust_pts
36
+
37
+
38
+ def set_pixel_coords(h, w):
39
+ i_range = torch.arange(0, h).view(1, h, 1).expand(1, h, w).type(torch.float32) # [1, H, W]
40
+ j_range = torch.arange(0, w).view(1, 1, w).expand(1, h, w).type(torch.float32) # [1, H, W]
41
+ ones = torch.ones(1, h, w).type(torch.float32)
42
+
43
+ pixel_coords = torch.stack((j_range, i_range, ones), dim=1) # [1, 3, H, W]
44
+
45
+ return pixel_coords
46
+
47
+
48
+ def get_boundingbox(img_hw, intrinsics, extrinsics, near_fars):
49
+ """
50
+ # get the minimum bounding box of all visual hulls
51
+ :param img_hw:
52
+ :param intrinsics:
53
+ :param extrinsics:
54
+ :param near_fars:
55
+ :return:
56
+ """
57
+
58
+ bnds = torch.zeros((3, 2))
59
+ bnds[:, 0] = np.inf
60
+ bnds[:, 1] = -np.inf
61
+
62
+ if isinstance(intrinsics, list):
63
+ num = len(intrinsics)
64
+ else:
65
+ num = intrinsics.shape[0]
66
+ # print("num: ", num)
67
+ view_frust_pts_list = []
68
+ for i in range(num):
69
+ if not isinstance(intrinsics[i], torch.Tensor):
70
+ cam_intr = torch.tensor(intrinsics[i])
71
+ w2c = torch.tensor(extrinsics[i])
72
+ c2w = torch.inverse(w2c)
73
+ else:
74
+ cam_intr = intrinsics[i]
75
+ w2c = extrinsics[i]
76
+ c2w = torch.inverse(w2c)
77
+ min_depth, max_depth = near_fars[i][0], near_fars[i][1]
78
+ # todo: check the coresponding points are matched
79
+
80
+ view_frust_pts = get_view_frustum(min_depth, max_depth, img_hw, cam_intr, c2w)
81
+ bnds[:, 0] = torch.min(bnds[:, 0], torch.min(view_frust_pts, dim=1)[0])
82
+ bnds[:, 1] = torch.max(bnds[:, 1], torch.max(view_frust_pts, dim=1)[0])
83
+ view_frust_pts_list.append(view_frust_pts)
84
+ all_view_frust_pts = torch.cat(view_frust_pts_list, dim=1)
85
+
86
+ # print("all_view_frust_pts: ", all_view_frust_pts.shape)
87
+ # distance = torch.norm(all_view_frust_pts, dim=0)
88
+ # print("distance: ", distance)
89
+
90
+ # print("all_view_frust_pts_z: ", all_view_frust_pts[2, :])
91
+
92
+ center = torch.tensor(((bnds[0, 1] + bnds[0, 0]) / 2, (bnds[1, 1] + bnds[1, 0]) / 2,
93
+ (bnds[2, 1] + bnds[2, 0]) / 2))
94
+
95
+ lengths = bnds[:, 1] - bnds[:, 0]
96
+
97
+ max_length, _ = torch.max(lengths, dim=0)
98
+ radius = max_length / 2
99
+
100
+ # print("radius: ", radius)
101
+ return center, radius, bnds
SparseNeuS_demo_v1/exp/lod0/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoints_*/
SparseNeuS_demo_v1/exp/lod0/checkpoints/ckpt_215000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:888aaa8abde948358c26e4ef63df99f666438345c1dee301059967c5ce77b6ea
3
+ size 5312111
SparseNeuS_demo_v1/exp_runner_generic_blender_val.py ADDED
@@ -0,0 +1,629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
+ import argparse
4
+ import numpy as np
5
+ from shutil import copyfile
6
+ import torch
7
+ from torch.utils.data import DataLoader
8
+ from torch.utils.tensorboard import SummaryWriter
9
+ from rich import print
10
+ from tqdm import tqdm
11
+ from pyhocon import ConfigFactory
12
+
13
+ import sys
14
+ sys.path.append(os.path.dirname(__file__))
15
+
16
+ from models.fields import SingleVarianceNetwork
17
+ from models.featurenet import FeatureNet
18
+ from models.trainer_generic import GenericTrainer
19
+ from models.sparse_sdf_network import SparseSdfNetwork
20
+ from models.rendering_network import GeneralRenderingNetwork
21
+ from data.blender_general_narrow_all_eval_new_data import BlenderPerView
22
+
23
+
24
+ from datetime import datetime
25
+
26
+ class Runner:
27
+ def __init__(self, conf_path, mode='train', is_continue=False,
28
+ is_restore=False, restore_lod0=False, local_rank=0):
29
+
30
+ # Initial setting
31
+ self.device = torch.device('cuda:%d' % local_rank)
32
+ # self.device = torch.device('cuda')
33
+ self.num_devices = torch.cuda.device_count()
34
+ self.is_continue = is_continue or (mode == "export_mesh")
35
+ self.is_restore = is_restore
36
+ self.restore_lod0 = restore_lod0
37
+ self.mode = mode
38
+ self.model_list = []
39
+ self.logger = logging.getLogger('exp_logger')
40
+
41
+ print("detected %d GPUs" % self.num_devices)
42
+
43
+ self.conf_path = conf_path
44
+ self.conf = ConfigFactory.parse_file(conf_path)
45
+ self.timestamp = None
46
+ if not self.is_continue:
47
+ self.timestamp = '_{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now())
48
+ self.base_exp_dir = self.conf['general.base_exp_dir'] + self.timestamp # jha comment this when testing and use this when training
49
+ else:
50
+ self.base_exp_dir = self.conf['general.base_exp_dir']
51
+ self.conf['general.base_exp_dir'] = self.base_exp_dir # jha use this when testing
52
+ print("base_exp_dir: " + self.base_exp_dir)
53
+ os.makedirs(self.base_exp_dir, exist_ok=True)
54
+ self.iter_step = 0
55
+ self.val_step = 0
56
+
57
+ # trainning parameters
58
+ self.end_iter = self.conf.get_int('train.end_iter')
59
+ self.save_freq = self.conf.get_int('train.save_freq')
60
+ self.report_freq = self.conf.get_int('train.report_freq')
61
+ self.val_freq = self.conf.get_int('train.val_freq')
62
+ self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq')
63
+ self.batch_size = self.num_devices # use DataParallel to warp
64
+ self.validate_resolution_level = self.conf.get_int('train.validate_resolution_level')
65
+ self.learning_rate = self.conf.get_float('train.learning_rate')
66
+ self.learning_rate_milestone = self.conf.get_list('train.learning_rate_milestone')
67
+ self.learning_rate_factor = self.conf.get_float('train.learning_rate_factor')
68
+ self.use_white_bkgd = self.conf.get_bool('train.use_white_bkgd')
69
+ self.N_rays = self.conf.get_int('train.N_rays')
70
+
71
+ # warmup params for sdf gradient
72
+ self.anneal_start_lod0 = self.conf.get_float('train.anneal_start', default=0)
73
+ self.anneal_end_lod0 = self.conf.get_float('train.anneal_end', default=0)
74
+ self.anneal_start_lod1 = self.conf.get_float('train.anneal_start_lod1', default=0)
75
+ self.anneal_end_lod1 = self.conf.get_float('train.anneal_end_lod1', default=0)
76
+
77
+ self.writer = None
78
+
79
+ # Networks
80
+ self.num_lods = self.conf.get_int('model.num_lods')
81
+
82
+ self.rendering_network_outside = None
83
+ self.sdf_network_lod0 = None
84
+ self.sdf_network_lod1 = None
85
+ self.variance_network_lod0 = None
86
+ self.variance_network_lod1 = None
87
+ self.rendering_network_lod0 = None
88
+ self.rendering_network_lod1 = None
89
+ self.pyramid_feature_network = None # extract 2d pyramid feature maps from images, used for geometry
90
+ self.pyramid_feature_network_lod1 = None # may use different feature network for different lod
91
+
92
+ # * pyramid_feature_network
93
+ self.pyramid_feature_network = FeatureNet().to(self.device)
94
+ self.sdf_network_lod0 = SparseSdfNetwork(**self.conf['model.sdf_network_lod0']).to(self.device)
95
+ self.variance_network_lod0 = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device)
96
+
97
+ if self.num_lods > 1:
98
+ self.sdf_network_lod1 = SparseSdfNetwork(**self.conf['model.sdf_network_lod1']).to(self.device)
99
+ self.variance_network_lod1 = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device)
100
+
101
+ self.rendering_network_lod0 = GeneralRenderingNetwork(**self.conf['model.rendering_network']).to(
102
+ self.device)
103
+
104
+ if self.num_lods > 1:
105
+ self.pyramid_feature_network_lod1 = FeatureNet().to(self.device)
106
+ self.rendering_network_lod1 = GeneralRenderingNetwork(
107
+ **self.conf['model.rendering_network_lod1']).to(self.device)
108
+ if self.mode == 'export_mesh' or self.mode == 'val':
109
+ # base_exp_dir_to_store = os.path.join(self.base_exp_dir, '{:%Y_%m_%d_%H_%M_%S}'.format(datetime.now()))
110
+ base_exp_dir_to_store = os.path.join("../", args.specific_dataset_name) #"../gradio_tmp" # MODIFIED
111
+ else:
112
+ base_exp_dir_to_store = self.base_exp_dir
113
+
114
+ print(f"Store in: {base_exp_dir_to_store}")
115
+ # Renderer model
116
+ self.trainer = GenericTrainer(
117
+ self.rendering_network_outside,
118
+ self.pyramid_feature_network,
119
+ self.pyramid_feature_network_lod1,
120
+ self.sdf_network_lod0,
121
+ self.sdf_network_lod1,
122
+ self.variance_network_lod0,
123
+ self.variance_network_lod1,
124
+ self.rendering_network_lod0,
125
+ self.rendering_network_lod1,
126
+ **self.conf['model.trainer'],
127
+ timestamp=self.timestamp,
128
+ base_exp_dir=base_exp_dir_to_store,
129
+ conf=self.conf)
130
+
131
+ self.data_setup() # * data setup
132
+
133
+ self.optimizer_setup()
134
+
135
+ # Load checkpoint
136
+ latest_model_name = None
137
+ if self.is_continue:
138
+ model_list_raw = os.listdir(os.path.join(self.base_exp_dir, 'checkpoints'))
139
+ model_list = []
140
+ for model_name in model_list_raw:
141
+ if model_name.startswith('ckpt'):
142
+ if model_name[-3:] == 'pth': # and int(model_name[5:-4]) <= self.end_iter:
143
+ model_list.append(model_name)
144
+ model_list.sort()
145
+ latest_model_name = model_list[-1]
146
+
147
+ if latest_model_name is not None:
148
+ self.logger.info('Find checkpoint: {}'.format(latest_model_name))
149
+ self.load_checkpoint(latest_model_name)
150
+
151
+ self.trainer = torch.nn.DataParallel(self.trainer).to(self.device)
152
+
153
+ if self.mode[:5] == 'train':
154
+ self.file_backup()
155
+
156
+ def optimizer_setup(self):
157
+ self.params_to_train = self.trainer.get_trainable_params()
158
+ self.optimizer = torch.optim.Adam(self.params_to_train, lr=self.learning_rate)
159
+
160
+ def data_setup(self):
161
+ """
162
+ if use ddp, use setup() not prepare_data(),
163
+ prepare_data() only called on 1 GPU/TPU in distributed
164
+ :return:
165
+ """
166
+
167
+ self.train_dataset = BlenderPerView(
168
+ root_dir=self.conf['dataset.trainpath'],
169
+ split=self.conf.get_string('dataset.train_split', default='train'),
170
+ split_filepath=self.conf.get_string('dataset.train_split_filepath', default=None),
171
+ n_views=self.conf['dataset.nviews'],
172
+ downSample=self.conf['dataset.imgScale_train'],
173
+ N_rays=self.N_rays,
174
+ batch_size=self.batch_size,
175
+ clean_image=True, # True for training
176
+ importance_sample=self.conf.get_bool('dataset.importance_sample', default=False),
177
+ specific_dataset_name = args.specific_dataset_name
178
+ )
179
+
180
+ self.val_dataset = BlenderPerView(
181
+ root_dir=self.conf['dataset.valpath'],
182
+ split=self.conf.get_string('dataset.test_split', default='test'),
183
+ split_filepath=self.conf.get_string('dataset.val_split_filepath', default=None),
184
+ n_views=3,
185
+ downSample=self.conf['dataset.imgScale_test'],
186
+ N_rays=self.N_rays,
187
+ batch_size=self.batch_size,
188
+ clean_image=self.conf.get_bool('dataset.mask_out_image',
189
+ default=False) if self.mode != 'train' else False,
190
+ importance_sample=self.conf.get_bool('dataset.importance_sample', default=False),
191
+ test_ref_views=self.conf.get_list('dataset.test_ref_views', default=[]),
192
+ specific_dataset_name = args.specific_dataset_name
193
+ )
194
+
195
+ # item = self.train_dataset.__getitem__(0)
196
+ self.train_dataloader = DataLoader(self.train_dataset,
197
+ shuffle=True,
198
+ num_workers=4 * self.batch_size,
199
+ # num_workers=1,
200
+ batch_size=self.batch_size,
201
+ pin_memory=True,
202
+ drop_last=True
203
+ )
204
+
205
+ self.val_dataloader = DataLoader(self.val_dataset,
206
+ # shuffle=False if self.mode == 'train' else True,
207
+ shuffle=False,
208
+ num_workers=4 * self.batch_size,
209
+ # num_workers=1,
210
+ batch_size=self.batch_size,
211
+ pin_memory=True,
212
+ drop_last=False
213
+ )
214
+
215
+ self.val_dataloader_iterator = iter(self.val_dataloader) # - should be after "reconstruct_metas_for_gru_fusion"
216
+
217
+ def train(self):
218
+ self.writer = SummaryWriter(log_dir=os.path.join(self.base_exp_dir, 'logs'))
219
+ res_step = self.end_iter - self.iter_step
220
+
221
+ dataloader = self.train_dataloader
222
+
223
+ epochs = int(1 + res_step // len(dataloader))
224
+
225
+ self.adjust_learning_rate()
226
+ print("starting training learning rate: {:.5f}".format(self.optimizer.param_groups[0]['lr']))
227
+
228
+ background_rgb = None
229
+ if self.use_white_bkgd:
230
+ # background_rgb = torch.ones([1, 3]).to(self.device)
231
+ background_rgb = 1.0
232
+
233
+ for epoch_i in range(epochs):
234
+
235
+ print("current epoch %d" % epoch_i)
236
+ dataloader = tqdm(dataloader)
237
+
238
+ for batch in dataloader:
239
+ # print("Checker1:, fetch data")
240
+ batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)]) # used to get meta
241
+
242
+ # - warmup params
243
+ if self.num_lods == 1:
244
+ alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0)
245
+ else:
246
+ alpha_inter_ratio_lod0 = 1.
247
+ alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1)
248
+
249
+ losses = self.trainer(
250
+ batch,
251
+ background_rgb=background_rgb,
252
+ alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
253
+ alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
254
+ iter_step=self.iter_step,
255
+ mode='train',
256
+ )
257
+
258
+ loss_types = ['loss_lod0', 'loss_lod1']
259
+ # print("[TEST]: weights_sum in trainer return", losses['losses_lod0']['weights_sum'].mean())
260
+
261
+ losses_lod0 = losses['losses_lod0']
262
+ losses_lod1 = losses['losses_lod1']
263
+ # import ipdb; ipdb.set_trace()
264
+ loss = 0
265
+ for loss_type in loss_types:
266
+ if losses[loss_type] is not None:
267
+ loss = loss + losses[loss_type].mean()
268
+ # print("Checker4:, begin BP")
269
+ self.optimizer.zero_grad()
270
+ loss.backward()
271
+ torch.nn.utils.clip_grad_norm_(self.params_to_train, 1.0)
272
+ self.optimizer.step()
273
+ # print("Checker5:, end BP")
274
+ self.iter_step += 1
275
+
276
+ if self.iter_step % self.report_freq == 0:
277
+ self.writer.add_scalar('Loss/loss', loss, self.iter_step)
278
+
279
+ if losses_lod0 is not None:
280
+ self.writer.add_scalar('Loss/d_loss_lod0',
281
+ losses_lod0['depth_loss'].mean() if losses_lod0 is not None else 0,
282
+ self.iter_step)
283
+ self.writer.add_scalar('Loss/sparse_loss_lod0',
284
+ losses_lod0[
285
+ 'sparse_loss'].mean() if losses_lod0 is not None else 0,
286
+ self.iter_step)
287
+ self.writer.add_scalar('Loss/color_loss_lod0',
288
+ losses_lod0['color_fine_loss'].mean()
289
+ if losses_lod0['color_fine_loss'] is not None else 0,
290
+ self.iter_step)
291
+
292
+ self.writer.add_scalar('statis/psnr_lod0',
293
+ losses_lod0['psnr'].mean()
294
+ if losses_lod0['psnr'] is not None else 0,
295
+ self.iter_step)
296
+
297
+ self.writer.add_scalar('param/variance_lod0',
298
+ 1. / torch.exp(self.variance_network_lod0.variance * 10),
299
+ self.iter_step)
300
+ self.writer.add_scalar('param/eikonal_loss', losses_lod0['gradient_error_loss'].mean() if losses_lod0 is not None else 0,
301
+ self.iter_step)
302
+
303
+ ######## - lod 1
304
+ if self.num_lods > 1:
305
+ self.writer.add_scalar('Loss/d_loss_lod1',
306
+ losses_lod1['depth_loss'].mean() if losses_lod1 is not None else 0,
307
+ self.iter_step)
308
+ self.writer.add_scalar('Loss/sparse_loss_lod1',
309
+ losses_lod1[
310
+ 'sparse_loss'].mean() if losses_lod1 is not None else 0,
311
+ self.iter_step)
312
+ self.writer.add_scalar('Loss/color_loss_lod1',
313
+ losses_lod1['color_fine_loss'].mean()
314
+ if losses_lod1['color_fine_loss'] is not None else 0,
315
+ self.iter_step)
316
+ self.writer.add_scalar('statis/sdf_mean_lod1',
317
+ losses_lod1['sdf_mean'].mean() if losses_lod1 is not None else 0,
318
+ self.iter_step)
319
+ self.writer.add_scalar('statis/psnr_lod1',
320
+ losses_lod1['psnr'].mean()
321
+ if losses_lod1['psnr'] is not None else 0,
322
+ self.iter_step)
323
+ self.writer.add_scalar('statis/sparseness_0.01_lod1',
324
+ losses_lod1['sparseness_1'].mean()
325
+ if losses_lod1['sparseness_1'] is not None else 0,
326
+ self.iter_step)
327
+ self.writer.add_scalar('statis/sparseness_0.02_lod1',
328
+ losses_lod1['sparseness_2'].mean()
329
+ if losses_lod1['sparseness_2'] is not None else 0,
330
+ self.iter_step)
331
+ self.writer.add_scalar('param/variance_lod1',
332
+ 1. / torch.exp(self.variance_network_lod1.variance * 10),
333
+ self.iter_step)
334
+
335
+ print(self.base_exp_dir)
336
+ print(
337
+ 'iter:{:8>d} '
338
+ 'loss = {:.4f} '
339
+ 'd_loss_lod0 = {:.4f} '
340
+ 'color_loss_lod0 = {:.4f} '
341
+ 'sparse_loss_lod0= {:.4f} '
342
+ 'd_loss_lod1 = {:.4f} '
343
+ 'color_loss_lod1 = {:.4f} '
344
+ ' lr = {:.5f}'.format(
345
+ self.iter_step, loss,
346
+ losses_lod0['depth_loss'].mean() if losses_lod0 is not None else 0,
347
+ losses_lod0['color_fine_loss'].mean() if losses_lod0 is not None else 0,
348
+ losses_lod0['sparse_loss'].mean() if losses_lod0 is not None else 0,
349
+ losses_lod1['depth_loss'].mean() if losses_lod1 is not None else 0,
350
+ losses_lod1['color_fine_loss'].mean() if losses_lod1 is not None else 0,
351
+ self.optimizer.param_groups[0]['lr']))
352
+
353
+ print('alpha_inter_ratio_lod0 = {:.4f} alpha_inter_ratio_lod1 = {:.4f}\n'.format(
354
+ alpha_inter_ratio_lod0, alpha_inter_ratio_lod1))
355
+
356
+ if losses_lod0 is not None:
357
+ # print("[TEST]: weights_sum in print", losses_lod0['weights_sum'].mean())
358
+ # import ipdb; ipdb.set_trace()
359
+ print(
360
+ 'iter:{:8>d} '
361
+ 'variance = {:.5f} '
362
+ 'weights_sum = {:.4f} '
363
+ 'weights_sum_fg = {:.4f} '
364
+ 'alpha_sum = {:.4f} '
365
+ 'sparse_weight= {:.4f} '
366
+ 'background_loss = {:.4f} '
367
+ 'background_weight = {:.4f} '
368
+ .format(
369
+ self.iter_step,
370
+ losses_lod0['variance'].mean(),
371
+ losses_lod0['weights_sum'].mean(),
372
+ losses_lod0['weights_sum_fg'].mean(),
373
+ losses_lod0['alpha_sum'].mean(),
374
+ losses_lod0['sparse_weight'].mean(),
375
+ losses_lod0['fg_bg_loss'].mean(),
376
+ losses_lod0['fg_bg_weight'].mean(),
377
+ ))
378
+
379
+ if losses_lod1 is not None:
380
+ print(
381
+ 'iter:{:8>d} '
382
+ 'variance = {:.5f} '
383
+ ' weights_sum = {:.4f} '
384
+ 'alpha_sum = {:.4f} '
385
+ 'fg_bg_loss = {:.4f} '
386
+ 'fg_bg_weight = {:.4f} '
387
+ 'sparse_weight= {:.4f} '
388
+ 'fg_bg_loss = {:.4f} '
389
+ 'fg_bg_weight = {:.4f} '
390
+ .format(
391
+ self.iter_step,
392
+ losses_lod1['variance'].mean(),
393
+ losses_lod1['weights_sum'].mean(),
394
+ losses_lod1['alpha_sum'].mean(),
395
+ losses_lod1['fg_bg_loss'].mean(),
396
+ losses_lod1['fg_bg_weight'].mean(),
397
+ losses_lod1['sparse_weight'].mean(),
398
+ losses_lod1['fg_bg_loss'].mean(),
399
+ losses_lod1['fg_bg_weight'].mean(),
400
+ ))
401
+
402
+ if self.iter_step % self.save_freq == 0:
403
+ self.save_checkpoint()
404
+
405
+ if self.iter_step % self.val_freq == 0:
406
+ self.validate()
407
+
408
+ # - ajust learning rate
409
+ self.adjust_learning_rate()
410
+
411
+ def adjust_learning_rate(self):
412
+ # - ajust learning rate, cosine learning schedule
413
+ learning_rate = (np.cos(np.pi * self.iter_step / self.end_iter) + 1.0) * 0.5 * 0.9 + 0.1
414
+ learning_rate = self.learning_rate * learning_rate
415
+ for g in self.optimizer.param_groups:
416
+ g['lr'] = learning_rate
417
+
418
+ def get_alpha_inter_ratio(self, start, end):
419
+ if end == 0.0:
420
+ return 1.0
421
+ elif self.iter_step < start:
422
+ return 0.0
423
+ else:
424
+ return np.min([1.0, (self.iter_step - start) / (end - start)])
425
+
426
+ def file_backup(self):
427
+ # copy python file
428
+ dir_lis = self.conf['general.recording']
429
+ os.makedirs(os.path.join(self.base_exp_dir, 'recording'), exist_ok=True)
430
+ for dir_name in dir_lis:
431
+ cur_dir = os.path.join(self.base_exp_dir, 'recording', dir_name)
432
+ os.makedirs(cur_dir, exist_ok=True)
433
+ files = os.listdir(dir_name)
434
+ for f_name in files:
435
+ if f_name[-3:] == '.py':
436
+ copyfile(os.path.join(dir_name, f_name), os.path.join(cur_dir, f_name))
437
+
438
+ # copy configs
439
+ copyfile(self.conf_path, os.path.join(self.base_exp_dir, 'recording', 'config.conf'))
440
+
441
+ def load_checkpoint(self, checkpoint_name):
442
+
443
+ def load_state_dict(network, checkpoint, comment):
444
+ if network is not None:
445
+ try:
446
+ pretrained_dict = checkpoint[comment]
447
+
448
+ model_dict = network.state_dict()
449
+
450
+ # 1. filter out unnecessary keys
451
+ pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
452
+ # 2. overwrite entries in the existing state dict
453
+ model_dict.update(pretrained_dict)
454
+ # 3. load the new state dict
455
+ network.load_state_dict(pretrained_dict)
456
+ except:
457
+ print(comment + " load fails")
458
+
459
+ checkpoint = torch.load(os.path.join(self.base_exp_dir, 'checkpoints', checkpoint_name),
460
+ map_location=self.device)
461
+
462
+ load_state_dict(self.rendering_network_outside, checkpoint, 'rendering_network_outside')
463
+
464
+ load_state_dict(self.sdf_network_lod0, checkpoint, 'sdf_network_lod0')
465
+ load_state_dict(self.sdf_network_lod1, checkpoint, 'sdf_network_lod1')
466
+
467
+ load_state_dict(self.pyramid_feature_network, checkpoint, 'pyramid_feature_network')
468
+ load_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network_lod1')
469
+
470
+ load_state_dict(self.variance_network_lod0, checkpoint, 'variance_network_lod0')
471
+ load_state_dict(self.variance_network_lod1, checkpoint, 'variance_network_lod1')
472
+
473
+ load_state_dict(self.rendering_network_lod0, checkpoint, 'rendering_network_lod0')
474
+ load_state_dict(self.rendering_network_lod1, checkpoint, 'rendering_network_lod1')
475
+
476
+ if self.restore_lod0: # use the trained lod0 networks to initialize lod1 networks
477
+ load_state_dict(self.sdf_network_lod1, checkpoint, 'sdf_network_lod0')
478
+ load_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network')
479
+ load_state_dict(self.rendering_network_lod1, checkpoint, 'rendering_network_lod0')
480
+
481
+ if self.is_continue and (not self.restore_lod0):
482
+ try:
483
+ self.optimizer.load_state_dict(checkpoint['optimizer'])
484
+ except:
485
+ print("load optimizer fails")
486
+ self.iter_step = checkpoint['iter_step']
487
+ self.val_step = checkpoint['val_step'] if 'val_step' in checkpoint.keys() else 0
488
+
489
+ self.logger.info('End')
490
+
491
+ def save_checkpoint(self):
492
+
493
+ def save_state_dict(network, checkpoint, comment):
494
+ if network is not None:
495
+ checkpoint[comment] = network.state_dict()
496
+
497
+ checkpoint = {
498
+ 'optimizer': self.optimizer.state_dict(),
499
+ 'iter_step': self.iter_step,
500
+ 'val_step': self.val_step,
501
+ }
502
+
503
+ save_state_dict(self.sdf_network_lod0, checkpoint, "sdf_network_lod0")
504
+ save_state_dict(self.sdf_network_lod1, checkpoint, "sdf_network_lod1")
505
+
506
+ save_state_dict(self.rendering_network_outside, checkpoint, 'rendering_network_outside')
507
+ save_state_dict(self.rendering_network_lod0, checkpoint, "rendering_network_lod0")
508
+ save_state_dict(self.rendering_network_lod1, checkpoint, "rendering_network_lod1")
509
+
510
+ save_state_dict(self.variance_network_lod0, checkpoint, 'variance_network_lod0')
511
+ save_state_dict(self.variance_network_lod1, checkpoint, 'variance_network_lod1')
512
+
513
+ save_state_dict(self.pyramid_feature_network, checkpoint, 'pyramid_feature_network')
514
+ save_state_dict(self.pyramid_feature_network_lod1, checkpoint, 'pyramid_feature_network_lod1')
515
+
516
+ os.makedirs(os.path.join(self.base_exp_dir, 'checkpoints'), exist_ok=True)
517
+ torch.save(checkpoint,
518
+ os.path.join(self.base_exp_dir, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step)))
519
+
520
+ def validate(self, resolution_level=-1):
521
+ # validate image
522
+ print("iter_step: ", self.iter_step)
523
+ self.logger.info('Validate begin')
524
+ self.val_step += 1
525
+
526
+ try:
527
+ batch = next(self.val_dataloader_iterator)
528
+ except:
529
+ self.val_dataloader_iterator = iter(self.val_dataloader) # reset
530
+
531
+ batch = next(self.val_dataloader_iterator)
532
+
533
+
534
+ background_rgb = None
535
+ if self.use_white_bkgd:
536
+ # background_rgb = torch.ones([1, 3]).to(self.device)
537
+ background_rgb = 1.0
538
+
539
+ batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)])
540
+
541
+ # - warmup params
542
+ if self.num_lods == 1:
543
+ alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0)
544
+ else:
545
+ alpha_inter_ratio_lod0 = 1.
546
+ alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1)
547
+
548
+ self.trainer(
549
+ batch,
550
+ background_rgb=background_rgb,
551
+ alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
552
+ alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
553
+ iter_step=self.iter_step,
554
+ save_vis=True,
555
+ mode='val',
556
+ )
557
+
558
+
559
+ def export_mesh(self, resolution_level=-1):
560
+ print("iter_step: ", self.iter_step)
561
+ self.logger.info('Validate begin')
562
+ self.val_step += 1
563
+
564
+ try:
565
+ batch = next(self.val_dataloader_iterator)
566
+ except:
567
+ self.val_dataloader_iterator = iter(self.val_dataloader) # reset
568
+
569
+ batch = next(self.val_dataloader_iterator)
570
+
571
+
572
+ background_rgb = None
573
+ if self.use_white_bkgd:
574
+ background_rgb = 1.0
575
+
576
+ batch['batch_idx'] = torch.tensor([x for x in range(self.batch_size)])
577
+
578
+ # - warmup params
579
+ if self.num_lods == 1:
580
+ alpha_inter_ratio_lod0 = self.get_alpha_inter_ratio(self.anneal_start_lod0, self.anneal_end_lod0)
581
+ else:
582
+ alpha_inter_ratio_lod0 = 1.
583
+ alpha_inter_ratio_lod1 = self.get_alpha_inter_ratio(self.anneal_start_lod1, self.anneal_end_lod1)
584
+ self.trainer(
585
+ batch,
586
+ background_rgb=background_rgb,
587
+ alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
588
+ alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
589
+ iter_step=self.iter_step,
590
+ save_vis=True,
591
+ mode='export_mesh',
592
+ )
593
+
594
+
595
+ if __name__ == '__main__':
596
+ # torch.set_default_tensor_type('torch.cuda.FloatTensor')
597
+ torch.set_default_dtype(torch.float32)
598
+ FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s"
599
+ logging.basicConfig(level=logging.INFO, format=FORMAT)
600
+
601
+ parser = argparse.ArgumentParser()
602
+ parser.add_argument('--conf', type=str, default='./confs/base.conf')
603
+ parser.add_argument('--mode', type=str, default='train')
604
+ parser.add_argument('--threshold', type=float, default=0.0)
605
+ parser.add_argument('--is_continue', default=False, action="store_true")
606
+ parser.add_argument('--is_restore', default=False, action="store_true")
607
+ parser.add_argument('--is_finetune', default=False, action="store_true")
608
+ parser.add_argument('--train_from_scratch', default=False, action="store_true")
609
+ parser.add_argument('--restore_lod0', default=False, action="store_true")
610
+ parser.add_argument('--local_rank', type=int, default=0)
611
+ parser.add_argument('--specific_dataset_name', type=str, default='GSO')
612
+
613
+
614
+ args = parser.parse_args()
615
+
616
+ torch.cuda.set_device(args.local_rank)
617
+ torch.backends.cudnn.benchmark = True # ! make training 2x faster
618
+
619
+ runner = Runner(args.conf, args.mode, args.is_continue, args.is_restore, args.restore_lod0,
620
+ args.local_rank)
621
+
622
+ if args.mode == 'train':
623
+ runner.train()
624
+ elif args.mode == 'val':
625
+ for i in range(len(runner.val_dataset)):
626
+ runner.validate()
627
+ elif args.mode == 'export_mesh':
628
+ for i in range(len(runner.val_dataset)):
629
+ runner.export_mesh()
SparseNeuS_demo_v1/loss/__init__.py ADDED
File without changes
SparseNeuS_demo_v1/loss/color_loss.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from loss.ncc import NCC
4
+
5
+
6
+ class Normalize(nn.Module):
7
+ def __init__(self):
8
+ super(Normalize, self).__init__()
9
+
10
+ def forward(self, bottom):
11
+ qn = torch.norm(bottom, p=2, dim=1).unsqueeze(dim=1) + 1e-12
12
+ top = bottom.div(qn)
13
+
14
+ return top
15
+
16
+
17
+ class OcclusionColorLoss(nn.Module):
18
+ def __init__(self, alpha=1, beta=0.025, gama=0.01, occlusion_aware=True, weight_thred=[0.6]):
19
+ super(OcclusionColorLoss, self).__init__()
20
+ self.alpha = alpha
21
+ self.beta = beta
22
+ self.gama = gama
23
+ self.occlusion_aware = occlusion_aware
24
+ self.eps = 1e-4
25
+
26
+ self.weight_thred = weight_thred
27
+ self.adjuster = ParamAdjuster(self.weight_thred, self.beta)
28
+
29
+ def forward(self, pred, gt, weight, mask, detach=False, occlusion_aware=True):
30
+ """
31
+
32
+ :param pred: [N_pts, 3]
33
+ :param gt: [N_pts, 3]
34
+ :param weight: [N_pts]
35
+ :param mask: [N_pts]
36
+ :return:
37
+ """
38
+ if detach:
39
+ weight = weight.detach()
40
+
41
+ error = torch.abs(pred - gt).sum(dim=-1, keepdim=False) # [N_pts]
42
+ error = error[mask]
43
+
44
+ if not (self.occlusion_aware and occlusion_aware):
45
+ return torch.mean(error), torch.mean(error)
46
+
47
+ beta = self.adjuster(weight.mean())
48
+
49
+ # weight = weight[mask]
50
+ weight = weight.clamp(0.0, 1.0)
51
+ term1 = self.alpha * torch.mean(weight[mask] * error)
52
+ term2 = beta * torch.log(1 - weight + self.eps).mean()
53
+ term3 = self.gama * torch.log(weight + self.eps).mean()
54
+
55
+ return term1 + term2 + term3, term1
56
+
57
+
58
+ class OcclusionColorPatchLoss(nn.Module):
59
+ def __init__(self, alpha=1, beta=0.025, gama=0.015,
60
+ occlusion_aware=True, type='l1', h_patch_size=3, weight_thred=[0.6]):
61
+ super(OcclusionColorPatchLoss, self).__init__()
62
+ self.alpha = alpha
63
+ self.beta = beta
64
+ self.gama = gama
65
+ self.occlusion_aware = occlusion_aware
66
+ self.type = type # 'l1' or 'ncc' loss
67
+ self.ncc = NCC(h_patch_size=h_patch_size)
68
+ self.eps = 1e-4
69
+ self.weight_thred = weight_thred
70
+
71
+ self.adjuster = ParamAdjuster(self.weight_thred, self.beta)
72
+
73
+ print("type {} patch_size {} beta {} gama {} weight_thred {}".format(type, h_patch_size, beta, gama,
74
+ weight_thred))
75
+
76
+ def forward(self, pred, gt, weight, mask, penalize_ratio=0.9, detach=False, occlusion_aware=True):
77
+ """
78
+
79
+ :param pred: [N_pts, Npx, 3]
80
+ :param gt: [N_pts, Npx, 3]
81
+ :param weight: [N_pts]
82
+ :param mask: [N_pts]
83
+ :return:
84
+ """
85
+
86
+ if detach:
87
+ weight = weight.detach()
88
+
89
+ if self.type == 'l1':
90
+ error = torch.abs(pred - gt).mean(dim=-1, keepdim=False).sum(dim=-1, keepdim=False) # [N_pts]
91
+ elif self.type == 'ncc':
92
+ error = 1 - self.ncc(pred[:, None, :, :], gt)[:, 0] # ncc 1 positive, -1 negative
93
+ error, indices = torch.sort(error)
94
+ mask = torch.index_select(mask, 0, index=indices)
95
+ mask[int(penalize_ratio * mask.shape[0]):] = False # can help boundaries
96
+ elif self.type == 'ssd':
97
+ error = ((pred - gt) ** 2).mean(dim=-1, keepdim=False).sum(dim=-1, keepdims=False)
98
+
99
+ error = error[mask]
100
+ if not (self.occlusion_aware and occlusion_aware):
101
+ return torch.mean(error), torch.mean(error), 0.
102
+
103
+ # * weight adjuster
104
+ beta = self.adjuster(weight.mean())
105
+
106
+ # weight = weight[mask]
107
+ weight = weight.clamp(0.0, 1.0)
108
+
109
+ term1 = self.alpha * torch.mean(weight[mask] * error)
110
+ term2 = beta * torch.log(1 - weight + self.eps).mean()
111
+ term3 = self.gama * torch.log(weight + self.eps).mean()
112
+
113
+ return term1 + term2 + term3, term1, beta
114
+
115
+
116
+ class ParamAdjuster(nn.Module):
117
+ def __init__(self, weight_thred, param):
118
+ super(ParamAdjuster, self).__init__()
119
+ self.weight_thred = weight_thred
120
+ self.thred_num = len(weight_thred)
121
+ self.param = param
122
+ self.global_step = 0
123
+ self.statis_window = 100
124
+ self.counter = 0
125
+ self.adjusted = False
126
+ self.adjusted_step = 0
127
+ self.thred_idx = 0
128
+
129
+ def reset(self):
130
+ self.counter = 0
131
+ self.adjusted = False
132
+
133
+ def adjust(self):
134
+ if (self.counter / self.statis_window) > 0.3:
135
+ self.param = self.param + 0.005
136
+ self.adjusted = True
137
+ self.adjusted_step = self.global_step
138
+ self.thred_idx += 1
139
+ print("adjusted param, now {}".format(self.param))
140
+
141
+ def forward(self, weight_mean):
142
+ self.global_step += 1
143
+
144
+ if (self.global_step % self.statis_window == 0) and self.adjusted is False:
145
+ self.adjust()
146
+ self.reset()
147
+
148
+ if self.thred_idx < self.thred_num:
149
+ if weight_mean < self.weight_thred[self.thred_idx] and (not self.adjusted):
150
+ self.counter += 1
151
+
152
+ return self.param
SparseNeuS_demo_v1/loss/depth_loss.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ class DepthLoss(nn.Module):
7
+ def __init__(self, type='l1'):
8
+ super(DepthLoss, self).__init__()
9
+ self.type = type
10
+
11
+
12
+ def forward(self, depth_pred, depth_gt, mask=None):
13
+ if (depth_gt < 0).sum() > 0:
14
+ # print("no depth loss")
15
+ return torch.tensor(0.0).to(depth_pred.device)
16
+ if mask is not None:
17
+ mask_d = (depth_gt > 0).float()
18
+
19
+ mask = mask * mask_d
20
+
21
+ mask_sum = mask.sum() + 1e-5
22
+ depth_error = (depth_pred - depth_gt) * mask
23
+ depth_loss = F.l1_loss(depth_error, torch.zeros_like(depth_error).to(depth_error.device),
24
+ reduction='sum') / mask_sum
25
+ else:
26
+ depth_error = depth_pred - depth_gt
27
+ depth_loss = F.l1_loss(depth_error, torch.zeros_like(depth_error).to(depth_error.device),
28
+ reduction='mean')
29
+ return depth_loss
30
+
31
+ def forward(self, depth_pred, depth_gt, mask=None):
32
+ if mask is not None:
33
+ mask_d = (depth_gt > 0).float()
34
+
35
+ mask = mask * mask_d
36
+
37
+ mask_sum = mask.sum() + 1e-5
38
+ depth_error = (depth_pred - depth_gt) * mask
39
+ depth_loss = F.l1_loss(depth_error, torch.zeros_like(depth_error).to(depth_error.device),
40
+ reduction='sum') / mask_sum
41
+ else:
42
+ depth_error = depth_pred - depth_gt
43
+ depth_loss = F.l1_loss(depth_error, torch.zeros_like(depth_error).to(depth_error.device),
44
+ reduction='mean')
45
+ return depth_loss
46
+
47
+ class DepthSmoothLoss(nn.Module):
48
+ def __init__(self):
49
+ super(DepthSmoothLoss, self).__init__()
50
+
51
+ def forward(self, disp, img, mask):
52
+ """
53
+ Computes the smoothness loss for a disparity image
54
+ The color image is used for edge-aware smoothness
55
+ :param disp: [B, 1, H, W]
56
+ :param img: [B, 1, H, W]
57
+ :param mask: [B, 1, H, W]
58
+ :return:
59
+ """
60
+ grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
61
+ grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
62
+
63
+ grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
64
+ grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)
65
+
66
+ grad_disp_x *= torch.exp(-grad_img_x)
67
+ grad_disp_y *= torch.exp(-grad_img_y)
68
+
69
+ grad_disp = (grad_disp_x * mask[:, :, :, :-1]).mean() + (grad_disp_y * mask[:, :, :-1, :]).mean()
70
+
71
+ return grad_disp
SparseNeuS_demo_v1/loss/depth_metric.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def l1(depth1, depth2):
5
+ """
6
+ Computes the l1 errors between the two depth maps.
7
+ Takes preprocessed depths (no nans, infs and non-positive values)
8
+
9
+ depth1: one depth map
10
+ depth2: another depth map
11
+
12
+ Returns:
13
+ L1(log)
14
+
15
+ """
16
+ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
17
+ diff = depth1 - depth2
18
+ num_pixels = float(diff.size)
19
+
20
+ if num_pixels == 0:
21
+ return np.nan
22
+ else:
23
+ return np.sum(np.absolute(diff)) / num_pixels
24
+
25
+
26
+ def l1_inverse(depth1, depth2):
27
+ """
28
+ Computes the l1 errors between inverses of two depth maps.
29
+ Takes preprocessed depths (no nans, infs and non-positive values)
30
+
31
+ depth1: one depth map
32
+ depth2: another depth map
33
+
34
+ Returns:
35
+ L1(log)
36
+
37
+ """
38
+ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
39
+ diff = np.reciprocal(depth1) - np.reciprocal(depth2)
40
+ num_pixels = float(diff.size)
41
+
42
+ if num_pixels == 0:
43
+ return np.nan
44
+ else:
45
+ return np.sum(np.absolute(diff)) / num_pixels
46
+
47
+
48
+ def rmse_log(depth1, depth2):
49
+ """
50
+ Computes the root min square errors between the logs of two depth maps.
51
+ Takes preprocessed depths (no nans, infs and non-positive values)
52
+
53
+ depth1: one depth map
54
+ depth2: another depth map
55
+
56
+ Returns:
57
+ RMSE(log)
58
+
59
+ """
60
+ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
61
+ log_diff = np.log(depth1) - np.log(depth2)
62
+ num_pixels = float(log_diff.size)
63
+
64
+ if num_pixels == 0:
65
+ return np.nan
66
+ else:
67
+ return np.sqrt(np.sum(np.square(log_diff)) / num_pixels)
68
+
69
+
70
+ def rmse(depth1, depth2):
71
+ """
72
+ Computes the root min square errors between the two depth maps.
73
+ Takes preprocessed depths (no nans, infs and non-positive values)
74
+
75
+ depth1: one depth map
76
+ depth2: another depth map
77
+
78
+ Returns:
79
+ RMSE(log)
80
+
81
+ """
82
+ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
83
+ diff = depth1 - depth2
84
+ num_pixels = float(diff.size)
85
+
86
+ if num_pixels == 0:
87
+ return np.nan
88
+ else:
89
+ return np.sqrt(np.sum(np.square(diff)) / num_pixels)
90
+
91
+
92
+ def scale_invariant(depth1, depth2):
93
+ """
94
+ Computes the scale invariant loss based on differences of logs of depth maps.
95
+ Takes preprocessed depths (no nans, infs and non-positive values)
96
+
97
+ depth1: one depth map
98
+ depth2: another depth map
99
+
100
+ Returns:
101
+ scale_invariant_distance
102
+
103
+ """
104
+ # sqrt(Eq. 3)
105
+ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
106
+ log_diff = np.log(depth1) - np.log(depth2)
107
+ num_pixels = float(log_diff.size)
108
+
109
+ if num_pixels == 0:
110
+ return np.nan
111
+ else:
112
+ return np.sqrt(np.sum(np.square(log_diff)) / num_pixels - np.square(np.sum(log_diff)) / np.square(num_pixels))
113
+
114
+
115
+ def abs_relative(depth_pred, depth_gt):
116
+ """
117
+ Computes relative absolute distance.
118
+ Takes preprocessed depths (no nans, infs and non-positive values)
119
+
120
+ depth_pred: depth map prediction
121
+ depth_gt: depth map ground truth
122
+
123
+ Returns:
124
+ abs_relative_distance
125
+
126
+ """
127
+ assert (np.all(np.isfinite(depth_pred) & np.isfinite(depth_gt) & (depth_pred >= 0) & (depth_gt >= 0)))
128
+ diff = depth_pred - depth_gt
129
+ num_pixels = float(diff.size)
130
+
131
+ if num_pixels == 0:
132
+ return np.nan
133
+ else:
134
+ return np.sum(np.absolute(diff) / depth_gt) / num_pixels
135
+
136
+
137
+ def avg_log10(depth1, depth2):
138
+ """
139
+ Computes average log_10 error (Liu, Neural Fields, 2015).
140
+ Takes preprocessed depths (no nans, infs and non-positive values)
141
+
142
+ depth1: one depth map
143
+ depth2: another depth map
144
+
145
+ Returns:
146
+ abs_relative_distance
147
+
148
+ """
149
+ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
150
+ log_diff = np.log10(depth1) - np.log10(depth2)
151
+ num_pixels = float(log_diff.size)
152
+
153
+ if num_pixels == 0:
154
+ return np.nan
155
+ else:
156
+ return np.sum(np.absolute(log_diff)) / num_pixels
157
+
158
+
159
+ def sq_relative(depth_pred, depth_gt):
160
+ """
161
+ Computes relative squared distance.
162
+ Takes preprocessed depths (no nans, infs and non-positive values)
163
+
164
+ depth_pred: depth map prediction
165
+ depth_gt: depth map ground truth
166
+
167
+ Returns:
168
+ squared_relative_distance
169
+
170
+ """
171
+ assert (np.all(np.isfinite(depth_pred) & np.isfinite(depth_gt) & (depth_pred >= 0) & (depth_gt >= 0)))
172
+ diff = depth_pred - depth_gt
173
+ num_pixels = float(diff.size)
174
+
175
+ if num_pixels == 0:
176
+ return np.nan
177
+ else:
178
+ return np.sum(np.square(diff) / depth_gt) / num_pixels
179
+
180
+
181
+ def ratio_threshold(depth1, depth2, threshold):
182
+ """
183
+ Computes the percentage of pixels for which the ratio of the two depth maps is less than a given threshold.
184
+ Takes preprocessed depths (no nans, infs and non-positive values)
185
+
186
+ depth1: one depth map
187
+ depth2: another depth map
188
+
189
+ Returns:
190
+ percentage of pixels with ratio less than the threshold
191
+
192
+ """
193
+ assert (threshold > 0.)
194
+ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
195
+ log_diff = np.log(depth1) - np.log(depth2)
196
+ num_pixels = float(log_diff.size)
197
+
198
+ if num_pixels == 0:
199
+ return np.nan
200
+ else:
201
+ return float(np.sum(np.absolute(log_diff) < np.log(threshold))) / num_pixels
202
+
203
+
204
+ def compute_depth_errors(depth_pred, depth_gt, valid_mask):
205
+ """
206
+ Computes different distance measures between two depth maps.
207
+
208
+ depth_pred: depth map prediction
209
+ depth_gt: depth map ground truth
210
+ distances_to_compute: which distances to compute
211
+
212
+ Returns:
213
+ a dictionary with computed distances, and the number of valid pixels
214
+
215
+ """
216
+ depth_pred = depth_pred[valid_mask]
217
+ depth_gt = depth_gt[valid_mask]
218
+ num_valid = np.sum(valid_mask)
219
+
220
+ distances_to_compute = ['l1',
221
+ 'l1_inverse',
222
+ 'scale_invariant',
223
+ 'abs_relative',
224
+ 'sq_relative',
225
+ 'avg_log10',
226
+ 'rmse_log',
227
+ 'rmse',
228
+ 'ratio_threshold_1.25',
229
+ 'ratio_threshold_1.5625',
230
+ 'ratio_threshold_1.953125']
231
+
232
+ results = {'num_valid': num_valid}
233
+ for dist in distances_to_compute:
234
+ if dist.startswith('ratio_threshold'):
235
+ threshold = float(dist.split('_')[-1])
236
+ results[dist] = ratio_threshold(depth_pred, depth_gt, threshold)
237
+ else:
238
+ results[dist] = globals()[dist](depth_pred, depth_gt)
239
+
240
+ return results
SparseNeuS_demo_v1/loss/ncc.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from math import exp, sqrt
5
+
6
+
7
+ class NCC(torch.nn.Module):
8
+ def __init__(self, h_patch_size, mode='rgb'):
9
+ super(NCC, self).__init__()
10
+ self.window_size = 2 * h_patch_size + 1
11
+ self.mode = mode # 'rgb' or 'gray'
12
+ self.channel = 3
13
+ self.register_buffer("window", create_window(self.window_size, self.channel))
14
+
15
+ def forward(self, img_pred, img_gt):
16
+ """
17
+ :param img_pred: [Npx, nviews, npatch, c]
18
+ :param img_gt: [Npx, npatch, c]
19
+ :return:
20
+ """
21
+ ntotpx, nviews, npatch, channels = img_pred.shape
22
+
23
+ patch_size = int(sqrt(npatch))
24
+ patch_img_pred = img_pred.reshape(ntotpx, nviews, patch_size, patch_size, channels).permute(0, 1, 4, 2,
25
+ 3).contiguous()
26
+ patch_img_gt = img_gt.reshape(ntotpx, patch_size, patch_size, channels).permute(0, 3, 1, 2)
27
+
28
+ return _ncc(patch_img_pred, patch_img_gt, self.window, self.channel)
29
+
30
+
31
+ def gaussian(window_size, sigma):
32
+ gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
33
+ return gauss / gauss.sum()
34
+
35
+
36
+ def create_window(window_size, channel, std=1.5):
37
+ _1D_window = gaussian(window_size, std).unsqueeze(1)
38
+ _2D_window = _1D_window.mm(_1D_window.t()).unsqueeze(0).unsqueeze(0)
39
+ window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
40
+ return window
41
+
42
+
43
+ def _ncc(pred, gt, window, channel):
44
+ ntotpx, nviews, nc, h, w = pred.shape
45
+ flat_pred = pred.view(-1, nc, h, w)
46
+ mu1 = F.conv2d(flat_pred, window, padding=0, groups=channel).view(ntotpx, nviews, nc)
47
+ mu2 = F.conv2d(gt, window, padding=0, groups=channel).view(ntotpx, nc)
48
+
49
+ mu1_sq = mu1.pow(2)
50
+ mu2_sq = mu2.pow(2).unsqueeze(1) # (ntotpx, 1, nc)
51
+
52
+ sigma1_sq = F.conv2d(flat_pred * flat_pred, window, padding=0, groups=channel).view(ntotpx, nviews, nc) - mu1_sq
53
+ sigma2_sq = F.conv2d(gt * gt, window, padding=0, groups=channel).view(ntotpx, 1, 3) - mu2_sq
54
+
55
+ sigma1 = torch.sqrt(sigma1_sq + 1e-4)
56
+ sigma2 = torch.sqrt(sigma2_sq + 1e-4)
57
+
58
+ pred_norm = (pred - mu1[:, :, :, None, None]) / (sigma1[:, :, :, None, None] + 1e-8) # [ntotpx, nviews, nc, h, w]
59
+ gt_norm = (gt[:, None, :, :, :] - mu2[:, None, :, None, None]) / (
60
+ sigma2[:, :, :, None, None] + 1e-8) # ntotpx, nc, h, w
61
+
62
+ ncc = F.conv2d((pred_norm * gt_norm).view(-1, nc, h, w), window, padding=0, groups=channel).view(
63
+ ntotpx, nviews, nc)
64
+
65
+ return torch.mean(ncc, dim=2)
SparseNeuS_demo_v1/models/__init__.py ADDED
File without changes
SparseNeuS_demo_v1/models/embedder.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ """ Positional encoding embedding. Code was taken from https://github.com/bmild/nerf. """
5
+
6
+
7
+ class Embedder:
8
+ def __init__(self, **kwargs):
9
+ self.kwargs = kwargs
10
+ self.create_embedding_fn()
11
+
12
+ def create_embedding_fn(self):
13
+ embed_fns = []
14
+ d = self.kwargs['input_dims']
15
+ out_dim = 0
16
+ if self.kwargs['include_input']:
17
+ embed_fns.append(lambda x: x)
18
+ out_dim += d
19
+
20
+ max_freq = self.kwargs['max_freq_log2']
21
+ N_freqs = self.kwargs['num_freqs']
22
+
23
+ if self.kwargs['log_sampling']:
24
+ freq_bands = 2. ** torch.linspace(0., max_freq, N_freqs)
25
+ else:
26
+ freq_bands = torch.linspace(2. ** 0., 2. ** max_freq, N_freqs)
27
+
28
+ for freq in freq_bands:
29
+ for p_fn in self.kwargs['periodic_fns']:
30
+ if self.kwargs['normalize']:
31
+ embed_fns.append(lambda x, p_fn=p_fn,
32
+ freq=freq: p_fn(x * freq) / freq)
33
+ else:
34
+ embed_fns.append(lambda x, p_fn=p_fn,
35
+ freq=freq: p_fn(x * freq))
36
+ out_dim += d
37
+
38
+ self.embed_fns = embed_fns
39
+ self.out_dim = out_dim
40
+
41
+ def embed(self, inputs):
42
+ return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
43
+
44
+
45
+ def get_embedder(multires, normalize=False, input_dims=3):
46
+ embed_kwargs = {
47
+ 'include_input': True,
48
+ 'input_dims': input_dims,
49
+ 'max_freq_log2': multires - 1,
50
+ 'num_freqs': multires,
51
+ 'normalize': normalize,
52
+ 'log_sampling': True,
53
+ 'periodic_fns': [torch.sin, torch.cos],
54
+ }
55
+
56
+ embedder_obj = Embedder(**embed_kwargs)
57
+
58
+ def embed(x, eo=embedder_obj): return eo.embed(x)
59
+
60
+ return embed, embedder_obj.out_dim
61
+
62
+
63
+ class Embedding(nn.Module):
64
+ def __init__(self, in_channels, N_freqs, logscale=True, normalize=False):
65
+ """
66
+ Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...)
67
+ in_channels: number of input channels (3 for both xyz and direction)
68
+ """
69
+ super(Embedding, self).__init__()
70
+ self.N_freqs = N_freqs
71
+ self.in_channels = in_channels
72
+ self.funcs = [torch.sin, torch.cos]
73
+ self.out_channels = in_channels * (len(self.funcs) * N_freqs + 1)
74
+ self.normalize = normalize
75
+
76
+ if logscale:
77
+ self.freq_bands = 2 ** torch.linspace(0, N_freqs - 1, N_freqs)
78
+ else:
79
+ self.freq_bands = torch.linspace(1, 2 ** (N_freqs - 1), N_freqs)
80
+
81
+ def forward(self, x):
82
+ """
83
+ Embeds x to (x, sin(2^k x), cos(2^k x), ...)
84
+ Different from the paper, "x" is also in the output
85
+ See https://github.com/bmild/nerf/issues/12
86
+
87
+ Inputs:
88
+ x: (B, self.in_channels)
89
+
90
+ Outputs:
91
+ out: (B, self.out_channels)
92
+ """
93
+ out = [x]
94
+ for freq in self.freq_bands:
95
+ for func in self.funcs:
96
+ if self.normalize:
97
+ out += [func(freq * x) / freq]
98
+ else:
99
+ out += [func(freq * x)]
100
+
101
+ return torch.cat(out, -1)
SparseNeuS_demo_v1/models/fast_renderer.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import torch.nn as nn
4
+ from icecream import ic
5
+
6
+
7
+ # - neus: use sphere-tracing to speed up depth maps extraction
8
+ # This code snippet is heavily borrowed from IDR.
9
+ class FastRenderer(nn.Module):
10
+ def __init__(self):
11
+ super(FastRenderer, self).__init__()
12
+
13
+ self.sdf_threshold = 5e-5
14
+ self.line_search_step = 0.5
15
+ self.line_step_iters = 1
16
+ self.sphere_tracing_iters = 10
17
+ self.n_steps = 100
18
+ self.n_secant_steps = 8
19
+
20
+ # - use sdf_network to inference sdf value or directly interpolate sdf value from precomputed sdf_volume
21
+ self.network_inference = False
22
+
23
+ def extract_depth_maps(self, rays_o, rays_d, near, far, sdf_network, conditional_volume):
24
+ with torch.no_grad():
25
+ curr_start_points, network_object_mask, acc_start_dis = self.get_intersection(
26
+ rays_o, rays_d, near, far,
27
+ sdf_network, conditional_volume)
28
+
29
+ network_object_mask = network_object_mask.reshape(-1)
30
+
31
+ return network_object_mask, acc_start_dis
32
+
33
+ def get_intersection(self, rays_o, rays_d, near, far, sdf_network, conditional_volume):
34
+ device = rays_o.device
35
+ num_pixels, _ = rays_d.shape
36
+
37
+ curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis = \
38
+ self.sphere_tracing(rays_o, rays_d, near, far, sdf_network, conditional_volume)
39
+
40
+ network_object_mask = (acc_start_dis < acc_end_dis)
41
+
42
+ # The non convergent rays should be handled by the sampler
43
+ sampler_mask = unfinished_mask_start
44
+ sampler_net_obj_mask = torch.zeros_like(sampler_mask).bool().to(device)
45
+ if sampler_mask.sum() > 0:
46
+ # sampler_min_max = torch.zeros((num_pixels, 2)).to(device)
47
+ # sampler_min_max[sampler_mask, 0] = acc_start_dis[sampler_mask]
48
+ # sampler_min_max[sampler_mask, 1] = acc_end_dis[sampler_mask]
49
+
50
+ # ray_sampler(self, rays_o, rays_d, near, far, sampler_mask):
51
+ sampler_pts, sampler_net_obj_mask, sampler_dists = self.ray_sampler(rays_o,
52
+ rays_d,
53
+ acc_start_dis,
54
+ acc_end_dis,
55
+ sampler_mask,
56
+ sdf_network,
57
+ conditional_volume
58
+ )
59
+
60
+ curr_start_points[sampler_mask] = sampler_pts[sampler_mask]
61
+ acc_start_dis[sampler_mask] = sampler_dists[sampler_mask][:, None]
62
+ network_object_mask[sampler_mask] = sampler_net_obj_mask[sampler_mask][:, None]
63
+
64
+ # print('----------------------------------------------------------------')
65
+ # print('RayTracing: object = {0}/{1}, secant on {2}/{3}.'
66
+ # .format(network_object_mask.sum(), len(network_object_mask), sampler_net_obj_mask.sum(),
67
+ # sampler_mask.sum()))
68
+ # print('----------------------------------------------------------------')
69
+
70
+ return curr_start_points, network_object_mask, acc_start_dis
71
+
72
+ def sphere_tracing(self, rays_o, rays_d, near, far, sdf_network, conditional_volume):
73
+ ''' Run sphere tracing algorithm for max iterations from both sides of unit sphere intersection '''
74
+
75
+ device = rays_o.device
76
+
77
+ unfinished_mask_start = (near < far).reshape(-1).clone()
78
+ unfinished_mask_end = (near < far).reshape(-1).clone()
79
+
80
+ # Initialize start current points
81
+ curr_start_points = rays_o + rays_d * near
82
+ acc_start_dis = near.clone()
83
+
84
+ # Initialize end current points
85
+ curr_end_points = rays_o + rays_d * far
86
+ acc_end_dis = far.clone()
87
+
88
+ # Initizlize min and max depth
89
+ min_dis = acc_start_dis.clone()
90
+ max_dis = acc_end_dis.clone()
91
+
92
+ # Iterate on the rays (from both sides) till finding a surface
93
+ iters = 0
94
+
95
+ next_sdf_start = torch.zeros_like(acc_start_dis).to(device)
96
+
97
+ if self.network_inference:
98
+ sdf_func = sdf_network.sdf
99
+ else:
100
+ sdf_func = sdf_network.sdf_from_sdfvolume
101
+
102
+ next_sdf_start[unfinished_mask_start] = sdf_func(
103
+ curr_start_points[unfinished_mask_start],
104
+ conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0]
105
+
106
+ next_sdf_end = torch.zeros_like(acc_end_dis).to(device)
107
+ next_sdf_end[unfinished_mask_end] = sdf_func(curr_end_points[unfinished_mask_end],
108
+ conditional_volume, lod=0, gru_fusion=False)[
109
+ 'sdf_pts_scale%d' % 0]
110
+
111
+ while True:
112
+ # Update sdf
113
+ curr_sdf_start = torch.zeros_like(acc_start_dis).to(device)
114
+ curr_sdf_start[unfinished_mask_start] = next_sdf_start[unfinished_mask_start]
115
+ curr_sdf_start[curr_sdf_start <= self.sdf_threshold] = 0
116
+
117
+ curr_sdf_end = torch.zeros_like(acc_end_dis).to(device)
118
+ curr_sdf_end[unfinished_mask_end] = next_sdf_end[unfinished_mask_end]
119
+ curr_sdf_end[curr_sdf_end <= self.sdf_threshold] = 0
120
+
121
+ # Update masks
122
+ unfinished_mask_start = unfinished_mask_start & (curr_sdf_start > self.sdf_threshold).reshape(-1)
123
+ unfinished_mask_end = unfinished_mask_end & (curr_sdf_end > self.sdf_threshold).reshape(-1)
124
+
125
+ if (
126
+ unfinished_mask_start.sum() == 0 and unfinished_mask_end.sum() == 0) or iters == self.sphere_tracing_iters:
127
+ break
128
+ iters += 1
129
+
130
+ # Make step
131
+ # Update distance
132
+ acc_start_dis = acc_start_dis + curr_sdf_start
133
+ acc_end_dis = acc_end_dis - curr_sdf_end
134
+
135
+ # Update points
136
+ curr_start_points = rays_o + acc_start_dis * rays_d
137
+ curr_end_points = rays_o + acc_end_dis * rays_d
138
+
139
+ # Fix points which wrongly crossed the surface
140
+ next_sdf_start = torch.zeros_like(acc_start_dis).to(device)
141
+ if unfinished_mask_start.sum() > 0:
142
+ next_sdf_start[unfinished_mask_start] = sdf_func(curr_start_points[unfinished_mask_start],
143
+ conditional_volume, lod=0, gru_fusion=False)[
144
+ 'sdf_pts_scale%d' % 0]
145
+
146
+ next_sdf_end = torch.zeros_like(acc_end_dis).to(device)
147
+ if unfinished_mask_end.sum() > 0:
148
+ next_sdf_end[unfinished_mask_end] = sdf_func(curr_end_points[unfinished_mask_end],
149
+ conditional_volume, lod=0, gru_fusion=False)[
150
+ 'sdf_pts_scale%d' % 0]
151
+
152
+ not_projected_start = (next_sdf_start < 0).reshape(-1)
153
+ not_projected_end = (next_sdf_end < 0).reshape(-1)
154
+ not_proj_iters = 0
155
+
156
+ while (
157
+ not_projected_start.sum() > 0 or not_projected_end.sum() > 0) and not_proj_iters < self.line_step_iters:
158
+ # Step backwards
159
+ if not_projected_start.sum() > 0:
160
+ acc_start_dis[not_projected_start] -= ((1 - self.line_search_step) / (2 ** not_proj_iters)) * \
161
+ curr_sdf_start[not_projected_start]
162
+ curr_start_points[not_projected_start] = (rays_o + acc_start_dis * rays_d)[not_projected_start]
163
+
164
+ next_sdf_start[not_projected_start] = sdf_func(
165
+ curr_start_points[not_projected_start],
166
+ conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0]
167
+
168
+ if not_projected_end.sum() > 0:
169
+ acc_end_dis[not_projected_end] += ((1 - self.line_search_step) / (2 ** not_proj_iters)) * \
170
+ curr_sdf_end[
171
+ not_projected_end]
172
+ curr_end_points[not_projected_end] = (rays_o + acc_end_dis * rays_d)[not_projected_end]
173
+
174
+ # Calc sdf
175
+
176
+ next_sdf_end[not_projected_end] = sdf_func(
177
+ curr_end_points[not_projected_end],
178
+ conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0]
179
+
180
+ # Update mask
181
+ not_projected_start = (next_sdf_start < 0).reshape(-1)
182
+ not_projected_end = (next_sdf_end < 0).reshape(-1)
183
+ not_proj_iters += 1
184
+
185
+ unfinished_mask_start = unfinished_mask_start & (acc_start_dis < acc_end_dis).reshape(-1)
186
+ unfinished_mask_end = unfinished_mask_end & (acc_start_dis < acc_end_dis).reshape(-1)
187
+
188
+ return curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis
189
+
190
+ def ray_sampler(self, rays_o, rays_d, near, far, sampler_mask, sdf_network, conditional_volume):
191
+ ''' Sample the ray in a given range and run secant on rays which have sign transition '''
192
+ device = rays_o.device
193
+ num_pixels, _ = rays_d.shape
194
+ sampler_pts = torch.zeros(num_pixels, 3).to(device).float()
195
+ sampler_dists = torch.zeros(num_pixels).to(device).float()
196
+
197
+ intervals_dist = torch.linspace(0, 1, steps=self.n_steps).to(device).view(1, -1)
198
+
199
+ pts_intervals = near + intervals_dist * (far - near)
200
+ points = rays_o[:, None, :] + pts_intervals[:, :, None] * rays_d[:, None, :]
201
+
202
+ # Get the non convergent rays
203
+ mask_intersect_idx = torch.nonzero(sampler_mask).flatten()
204
+ points = points.reshape((-1, self.n_steps, 3))[sampler_mask, :, :]
205
+ pts_intervals = pts_intervals.reshape((-1, self.n_steps))[sampler_mask]
206
+
207
+ if self.network_inference:
208
+ sdf_func = sdf_network.sdf
209
+ else:
210
+ sdf_func = sdf_network.sdf_from_sdfvolume
211
+
212
+ sdf_val_all = []
213
+ for pnts in torch.split(points.reshape(-1, 3), 100000, dim=0):
214
+ sdf_val_all.append(sdf_func(pnts,
215
+ conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0])
216
+ sdf_val = torch.cat(sdf_val_all).reshape(-1, self.n_steps)
217
+
218
+ tmp = torch.sign(sdf_val) * torch.arange(self.n_steps, 0, -1).to(device).float().reshape(
219
+ (1, self.n_steps)) # Force argmin to return the first min value
220
+ sampler_pts_ind = torch.argmin(tmp, -1)
221
+ sampler_pts[mask_intersect_idx] = points[torch.arange(points.shape[0]), sampler_pts_ind, :]
222
+ sampler_dists[mask_intersect_idx] = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind]
223
+
224
+ net_surface_pts = (sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind] < 0)
225
+
226
+ # take points with minimal SDF value for P_out pixels
227
+ p_out_mask = ~net_surface_pts
228
+ n_p_out = p_out_mask.sum()
229
+ if n_p_out > 0:
230
+ out_pts_idx = torch.argmin(sdf_val[p_out_mask, :], -1)
231
+ sampler_pts[mask_intersect_idx[p_out_mask]] = points[p_out_mask, :, :][torch.arange(n_p_out), out_pts_idx,
232
+ :]
233
+ sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[p_out_mask, :][
234
+ torch.arange(n_p_out), out_pts_idx]
235
+
236
+ # Get Network object mask
237
+ sampler_net_obj_mask = sampler_mask.clone()
238
+ sampler_net_obj_mask[mask_intersect_idx[~net_surface_pts]] = False
239
+
240
+ # Run Secant method
241
+ secant_pts = net_surface_pts
242
+ n_secant_pts = secant_pts.sum()
243
+ if n_secant_pts > 0:
244
+ # Get secant z predictions
245
+ z_high = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind][secant_pts]
246
+ sdf_high = sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind][secant_pts]
247
+ z_low = pts_intervals[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1]
248
+ sdf_low = sdf_val[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1]
249
+
250
+ cam_loc_secant = rays_o[mask_intersect_idx[secant_pts]]
251
+ ray_directions_secant = rays_d[mask_intersect_idx[secant_pts]]
252
+ z_pred_secant = self.secant(sdf_low, sdf_high, z_low, z_high, cam_loc_secant, ray_directions_secant,
253
+ sdf_network, conditional_volume)
254
+
255
+ # Get points
256
+ sampler_pts[mask_intersect_idx[secant_pts]] = cam_loc_secant + z_pred_secant[:,
257
+ None] * ray_directions_secant
258
+ sampler_dists[mask_intersect_idx[secant_pts]] = z_pred_secant
259
+
260
+ return sampler_pts, sampler_net_obj_mask, sampler_dists
261
+
262
+ def secant(self, sdf_low, sdf_high, z_low, z_high, rays_o, rays_d, sdf_network, conditional_volume):
263
+ ''' Runs the secant method for interval [z_low, z_high] for n_secant_steps '''
264
+
265
+ if self.network_inference:
266
+ sdf_func = sdf_network.sdf
267
+ else:
268
+ sdf_func = sdf_network.sdf_from_sdfvolume
269
+
270
+ z_pred = -sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low
271
+ for i in range(self.n_secant_steps):
272
+ p_mid = rays_o + z_pred[:, None] * rays_d
273
+ sdf_mid = sdf_func(p_mid,
274
+ conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0].reshape(-1)
275
+ ind_low = (sdf_mid > 0).reshape(-1)
276
+ if ind_low.sum() > 0:
277
+ z_low[ind_low] = z_pred[ind_low]
278
+ sdf_low[ind_low] = sdf_mid[ind_low]
279
+ ind_high = sdf_mid < 0
280
+ if ind_high.sum() > 0:
281
+ z_high[ind_high] = z_pred[ind_high]
282
+ sdf_high[ind_high] = sdf_mid[ind_high]
283
+
284
+ z_pred = - sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low
285
+
286
+ return z_pred # 1D tensor
287
+
288
+ def minimal_sdf_points(self, num_pixels, sdf, cam_loc, ray_directions, mask, min_dis, max_dis):
289
+ ''' Find points with minimal SDF value on rays for P_out pixels '''
290
+ device = sdf.device
291
+ n_mask_points = mask.sum()
292
+
293
+ n = self.n_steps
294
+ # steps = torch.linspace(0.0, 1.0,n).to(device)
295
+ steps = torch.empty(n).uniform_(0.0, 1.0).to(device)
296
+ mask_max_dis = max_dis[mask].unsqueeze(-1)
297
+ mask_min_dis = min_dis[mask].unsqueeze(-1)
298
+ steps = steps.unsqueeze(0).repeat(n_mask_points, 1) * (mask_max_dis - mask_min_dis) + mask_min_dis
299
+
300
+ mask_points = cam_loc.unsqueeze(1).repeat(1, num_pixels, 1).reshape(-1, 3)[mask]
301
+ mask_rays = ray_directions[mask, :]
302
+
303
+ mask_points_all = mask_points.unsqueeze(1).repeat(1, n, 1) + steps.unsqueeze(-1) * mask_rays.unsqueeze(
304
+ 1).repeat(1, n, 1)
305
+ points = mask_points_all.reshape(-1, 3)
306
+
307
+ mask_sdf_all = []
308
+ for pnts in torch.split(points, 100000, dim=0):
309
+ mask_sdf_all.append(sdf(pnts))
310
+
311
+ mask_sdf_all = torch.cat(mask_sdf_all).reshape(-1, n)
312
+ min_vals, min_idx = mask_sdf_all.min(-1)
313
+ min_mask_points = mask_points_all.reshape(-1, n, 3)[torch.arange(0, n_mask_points), min_idx]
314
+ min_mask_dist = steps.reshape(-1, n)[torch.arange(0, n_mask_points), min_idx]
315
+
316
+ return min_mask_points, min_mask_dist
SparseNeuS_demo_v1/models/featurenet.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ # ! amazing!!!! autograd.grad with set_detect_anomaly(True) will cause memory leak
4
+ # ! https://github.com/pytorch/pytorch/issues/51349
5
+ # torch.autograd.set_detect_anomaly(True)
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ from inplace_abn import InPlaceABN
9
+
10
+
11
+ ############################################# MVS Net models ################################################
12
+ class ConvBnReLU(nn.Module):
13
+ def __init__(self, in_channels, out_channels,
14
+ kernel_size=3, stride=1, pad=1,
15
+ norm_act=InPlaceABN):
16
+ super(ConvBnReLU, self).__init__()
17
+ self.conv = nn.Conv2d(in_channels, out_channels,
18
+ kernel_size, stride=stride, padding=pad, bias=False)
19
+ self.bn = norm_act(out_channels)
20
+
21
+ def forward(self, x):
22
+ return self.bn(self.conv(x))
23
+
24
+
25
+ class ConvBnReLU3D(nn.Module):
26
+ def __init__(self, in_channels, out_channels,
27
+ kernel_size=3, stride=1, pad=1,
28
+ norm_act=InPlaceABN):
29
+ super(ConvBnReLU3D, self).__init__()
30
+ self.conv = nn.Conv3d(in_channels, out_channels,
31
+ kernel_size, stride=stride, padding=pad, bias=False)
32
+ self.bn = norm_act(out_channels)
33
+ # self.bn = nn.ReLU()
34
+
35
+ def forward(self, x):
36
+ return self.bn(self.conv(x))
37
+
38
+
39
+ ################################### feature net ######################################
40
+ class FeatureNet(nn.Module):
41
+ """
42
+ output 3 levels of features using a FPN structure
43
+ """
44
+
45
+ def __init__(self, norm_act=InPlaceABN):
46
+ super(FeatureNet, self).__init__()
47
+
48
+ self.conv0 = nn.Sequential(
49
+ ConvBnReLU(3, 8, 3, 1, 1, norm_act=norm_act),
50
+ ConvBnReLU(8, 8, 3, 1, 1, norm_act=norm_act))
51
+
52
+ self.conv1 = nn.Sequential(
53
+ ConvBnReLU(8, 16, 5, 2, 2, norm_act=norm_act),
54
+ ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act),
55
+ ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act))
56
+
57
+ self.conv2 = nn.Sequential(
58
+ ConvBnReLU(16, 32, 5, 2, 2, norm_act=norm_act),
59
+ ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act),
60
+ ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act))
61
+
62
+ self.toplayer = nn.Conv2d(32, 32, 1)
63
+ self.lat1 = nn.Conv2d(16, 32, 1)
64
+ self.lat0 = nn.Conv2d(8, 32, 1)
65
+
66
+ # to reduce channel size of the outputs from FPN
67
+ self.smooth1 = nn.Conv2d(32, 16, 3, padding=1)
68
+ self.smooth0 = nn.Conv2d(32, 8, 3, padding=1)
69
+
70
+ def _upsample_add(self, x, y):
71
+ return F.interpolate(x, scale_factor=2,
72
+ mode="bilinear", align_corners=True) + y
73
+
74
+ def forward(self, x):
75
+ # x: (B, 3, H, W)
76
+ conv0 = self.conv0(x) # (B, 8, H, W)
77
+ conv1 = self.conv1(conv0) # (B, 16, H//2, W//2)
78
+ conv2 = self.conv2(conv1) # (B, 32, H//4, W//4)
79
+ feat2 = self.toplayer(conv2) # (B, 32, H//4, W//4)
80
+ feat1 = self._upsample_add(feat2, self.lat1(conv1)) # (B, 32, H//2, W//2)
81
+ feat0 = self._upsample_add(feat1, self.lat0(conv0)) # (B, 32, H, W)
82
+
83
+ # reduce output channels
84
+ feat1 = self.smooth1(feat1) # (B, 16, H//2, W//2)
85
+ feat0 = self.smooth0(feat0) # (B, 8, H, W)
86
+
87
+ # feats = {"level_0": feat0,
88
+ # "level_1": feat1,
89
+ # "level_2": feat2}
90
+
91
+ return [feat2, feat1, feat0] # coarser to finer features
SparseNeuS_demo_v1/models/fields.py ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # The codes are from NeuS
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ import numpy as np
7
+ from models.embedder import get_embedder
8
+
9
+
10
+ class SDFNetwork(nn.Module):
11
+ def __init__(self,
12
+ d_in,
13
+ d_out,
14
+ d_hidden,
15
+ n_layers,
16
+ skip_in=(4,),
17
+ multires=0,
18
+ bias=0.5,
19
+ scale=1,
20
+ geometric_init=True,
21
+ weight_norm=True,
22
+ activation='softplus',
23
+ conditional_type='multiply'):
24
+ super(SDFNetwork, self).__init__()
25
+
26
+ dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out]
27
+
28
+ self.embed_fn_fine = None
29
+
30
+ if multires > 0:
31
+ embed_fn, input_ch = get_embedder(multires, input_dims=d_in, normalize=False)
32
+ self.embed_fn_fine = embed_fn
33
+ dims[0] = input_ch
34
+
35
+ self.num_layers = len(dims)
36
+ self.skip_in = skip_in
37
+ self.scale = scale
38
+
39
+ for l in range(0, self.num_layers - 1):
40
+ if l + 1 in self.skip_in:
41
+ out_dim = dims[l + 1] - dims[0]
42
+ else:
43
+ out_dim = dims[l + 1]
44
+
45
+ lin = nn.Linear(dims[l], out_dim)
46
+
47
+ if geometric_init:
48
+ if l == self.num_layers - 2:
49
+ torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.pi) / np.sqrt(dims[l]), std=0.0001)
50
+ torch.nn.init.constant_(lin.bias, -bias)
51
+ elif multires > 0 and l == 0:
52
+ torch.nn.init.constant_(lin.bias, 0.0)
53
+ torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
54
+ torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2) / np.sqrt(out_dim))
55
+ elif multires > 0 and l in self.skip_in:
56
+ torch.nn.init.constant_(lin.bias, 0.0)
57
+ torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
58
+ torch.nn.init.constant_(lin.weight[:, -(dims[0] - 3):], 0.0) # ? why dims[0] - 3
59
+ else:
60
+ torch.nn.init.constant_(lin.bias, 0.0)
61
+ torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
62
+
63
+ if weight_norm:
64
+ lin = nn.utils.weight_norm(lin)
65
+
66
+ setattr(self, "lin" + str(l), lin)
67
+
68
+ if activation == 'softplus':
69
+ self.activation = nn.Softplus(beta=100)
70
+ else:
71
+ assert activation == 'relu'
72
+ self.activation = nn.ReLU()
73
+
74
+ def forward(self, inputs):
75
+ inputs = inputs * self.scale
76
+ if self.embed_fn_fine is not None:
77
+ inputs = self.embed_fn_fine(inputs)
78
+
79
+ x = inputs
80
+ for l in range(0, self.num_layers - 1):
81
+ lin = getattr(self, "lin" + str(l))
82
+
83
+ if l in self.skip_in:
84
+ x = torch.cat([x, inputs], 1) / np.sqrt(2)
85
+
86
+ x = lin(x)
87
+
88
+ if l < self.num_layers - 2:
89
+ x = self.activation(x)
90
+ return torch.cat([x[:, :1] / self.scale, x[:, 1:]], dim=-1)
91
+
92
+ def sdf(self, x):
93
+ return self.forward(x)[:, :1]
94
+
95
+ def sdf_hidden_appearance(self, x):
96
+ return self.forward(x)
97
+
98
+ def gradient(self, x):
99
+ x.requires_grad_(True)
100
+ y = self.sdf(x)
101
+ d_output = torch.ones_like(y, requires_grad=False, device=y.device)
102
+ gradients = torch.autograd.grad(
103
+ outputs=y,
104
+ inputs=x,
105
+ grad_outputs=d_output,
106
+ create_graph=True,
107
+ retain_graph=True,
108
+ only_inputs=True)[0]
109
+ return gradients.unsqueeze(1)
110
+
111
+
112
+ class VarianceNetwork(nn.Module):
113
+ def __init__(self, d_in, d_out, d_hidden, n_layers, skip_in=(4,), multires=0):
114
+ super(VarianceNetwork, self).__init__()
115
+
116
+ dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out]
117
+
118
+ self.embed_fn_fine = None
119
+
120
+ if multires > 0:
121
+ embed_fn, input_ch = get_embedder(multires, normalize=False)
122
+ self.embed_fn_fine = embed_fn
123
+ dims[0] = input_ch
124
+
125
+ self.num_layers = len(dims)
126
+ self.skip_in = skip_in
127
+
128
+ for l in range(0, self.num_layers - 1):
129
+ if l + 1 in self.skip_in:
130
+ out_dim = dims[l + 1] - dims[0]
131
+ else:
132
+ out_dim = dims[l + 1]
133
+
134
+ lin = nn.Linear(dims[l], out_dim)
135
+ setattr(self, "lin" + str(l), lin)
136
+
137
+ self.relu = nn.ReLU()
138
+ self.softplus = nn.Softplus(beta=100)
139
+
140
+ def forward(self, inputs):
141
+ if self.embed_fn_fine is not None:
142
+ inputs = self.embed_fn_fine(inputs)
143
+
144
+ x = inputs
145
+ for l in range(0, self.num_layers - 1):
146
+ lin = getattr(self, "lin" + str(l))
147
+
148
+ if l in self.skip_in:
149
+ x = torch.cat([x, inputs], 1) / np.sqrt(2)
150
+
151
+ x = lin(x)
152
+
153
+ if l < self.num_layers - 2:
154
+ x = self.relu(x)
155
+
156
+ # return torch.exp(x)
157
+ return 1.0 / (self.softplus(x + 0.5) + 1e-3)
158
+
159
+ def coarse(self, inputs):
160
+ return self.forward(inputs)[:, :1]
161
+
162
+ def fine(self, inputs):
163
+ return self.forward(inputs)[:, 1:]
164
+
165
+
166
+ class FixVarianceNetwork(nn.Module):
167
+ def __init__(self, base):
168
+ super(FixVarianceNetwork, self).__init__()
169
+ self.base = base
170
+ self.iter_step = 0
171
+
172
+ def set_iter_step(self, iter_step):
173
+ self.iter_step = iter_step
174
+
175
+ def forward(self, x):
176
+ return torch.ones([len(x), 1]) * np.exp(-self.iter_step / self.base)
177
+
178
+
179
+ class SingleVarianceNetwork(nn.Module):
180
+ def __init__(self, init_val=1.0):
181
+ super(SingleVarianceNetwork, self).__init__()
182
+ self.register_parameter('variance', nn.Parameter(torch.tensor(init_val)))
183
+
184
+ def forward(self, x):
185
+ return torch.ones([len(x), 1]).to(x.device) * torch.exp(self.variance * 10.0)
186
+
187
+
188
+
189
+ class RenderingNetwork(nn.Module):
190
+ def __init__(
191
+ self,
192
+ d_feature,
193
+ mode,
194
+ d_in,
195
+ d_out,
196
+ d_hidden,
197
+ n_layers,
198
+ weight_norm=True,
199
+ multires_view=0,
200
+ squeeze_out=True,
201
+ d_conditional_colors=0
202
+ ):
203
+ super().__init__()
204
+
205
+ self.mode = mode
206
+ self.squeeze_out = squeeze_out
207
+ dims = [d_in + d_feature] + [d_hidden for _ in range(n_layers)] + [d_out]
208
+
209
+ self.embedview_fn = None
210
+ if multires_view > 0:
211
+ embedview_fn, input_ch = get_embedder(multires_view)
212
+ self.embedview_fn = embedview_fn
213
+ dims[0] += (input_ch - 3)
214
+
215
+ self.num_layers = len(dims)
216
+
217
+ for l in range(0, self.num_layers - 1):
218
+ out_dim = dims[l + 1]
219
+ lin = nn.Linear(dims[l], out_dim)
220
+
221
+ if weight_norm:
222
+ lin = nn.utils.weight_norm(lin)
223
+
224
+ setattr(self, "lin" + str(l), lin)
225
+
226
+ self.relu = nn.ReLU()
227
+
228
+ def forward(self, points, normals, view_dirs, feature_vectors):
229
+ if self.embedview_fn is not None:
230
+ view_dirs = self.embedview_fn(view_dirs)
231
+
232
+ rendering_input = None
233
+
234
+ if self.mode == 'idr':
235
+ rendering_input = torch.cat([points, view_dirs, normals, feature_vectors], dim=-1)
236
+ elif self.mode == 'no_view_dir':
237
+ rendering_input = torch.cat([points, normals, feature_vectors], dim=-1)
238
+ elif self.mode == 'no_normal':
239
+ rendering_input = torch.cat([points, view_dirs, feature_vectors], dim=-1)
240
+ elif self.mode == 'no_points':
241
+ rendering_input = torch.cat([view_dirs, normals, feature_vectors], dim=-1)
242
+ elif self.mode == 'no_points_no_view_dir':
243
+ rendering_input = torch.cat([normals, feature_vectors], dim=-1)
244
+
245
+ x = rendering_input
246
+
247
+ for l in range(0, self.num_layers - 1):
248
+ lin = getattr(self, "lin" + str(l))
249
+
250
+ x = lin(x)
251
+
252
+ if l < self.num_layers - 2:
253
+ x = self.relu(x)
254
+
255
+ if self.squeeze_out:
256
+ x = torch.sigmoid(x)
257
+ return x
258
+
259
+
260
+ # Code from nerf-pytorch
261
+ class NeRF(nn.Module):
262
+ def __init__(self, D=8, W=256, d_in=3, d_in_view=3, multires=0, multires_view=0, output_ch=4, skips=[4],
263
+ use_viewdirs=False):
264
+ """
265
+ """
266
+ super(NeRF, self).__init__()
267
+ self.D = D
268
+ self.W = W
269
+ self.d_in = d_in
270
+ self.d_in_view = d_in_view
271
+ self.input_ch = 3
272
+ self.input_ch_view = 3
273
+ self.embed_fn = None
274
+ self.embed_fn_view = None
275
+
276
+ if multires > 0:
277
+ embed_fn, input_ch = get_embedder(multires, input_dims=d_in, normalize=False)
278
+ self.embed_fn = embed_fn
279
+ self.input_ch = input_ch
280
+
281
+ if multires_view > 0:
282
+ embed_fn_view, input_ch_view = get_embedder(multires_view, input_dims=d_in_view, normalize=False)
283
+ self.embed_fn_view = embed_fn_view
284
+ self.input_ch_view = input_ch_view
285
+
286
+ self.skips = skips
287
+ self.use_viewdirs = use_viewdirs
288
+
289
+ self.pts_linears = nn.ModuleList(
290
+ [nn.Linear(self.input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + self.input_ch, W)
291
+ for i in
292
+ range(D - 1)])
293
+
294
+ ### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
295
+ self.views_linears = nn.ModuleList([nn.Linear(self.input_ch_view + W, W // 2)])
296
+
297
+ ### Implementation according to the paper
298
+ # self.views_linears = nn.ModuleList(
299
+ # [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])
300
+
301
+ if use_viewdirs:
302
+ self.feature_linear = nn.Linear(W, W)
303
+ self.alpha_linear = nn.Linear(W, 1)
304
+ self.rgb_linear = nn.Linear(W // 2, 3)
305
+ else:
306
+ self.output_linear = nn.Linear(W, output_ch)
307
+
308
+ def forward(self, input_pts, input_views):
309
+ if self.embed_fn is not None:
310
+ input_pts = self.embed_fn(input_pts)
311
+ if self.embed_fn_view is not None:
312
+ input_views = self.embed_fn_view(input_views)
313
+
314
+ h = input_pts
315
+ for i, l in enumerate(self.pts_linears):
316
+ h = self.pts_linears[i](h)
317
+ h = F.relu(h)
318
+ if i in self.skips:
319
+ h = torch.cat([input_pts, h], -1)
320
+
321
+ if self.use_viewdirs:
322
+ alpha = self.alpha_linear(h)
323
+ feature = self.feature_linear(h)
324
+ h = torch.cat([feature, input_views], -1)
325
+
326
+ for i, l in enumerate(self.views_linears):
327
+ h = self.views_linears[i](h)
328
+ h = F.relu(h)
329
+
330
+ rgb = self.rgb_linear(h)
331
+ return alpha + 1.0, rgb
332
+ else:
333
+ assert False
SparseNeuS_demo_v1/models/patch_projector.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Patch Projector
3
+ """
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ import numpy as np
8
+ from models.render_utils import sample_ptsFeatures_from_featureMaps
9
+
10
+
11
+ class PatchProjector():
12
+ def __init__(self, patch_size):
13
+ self.h_patch_size = patch_size
14
+ self.offsets = build_patch_offset(patch_size) # the warping patch offsets index
15
+
16
+ self.z_axis = torch.tensor([0, 0, 1]).float()
17
+
18
+ self.plane_dist_thresh = 0.001
19
+
20
+ # * correctness checked
21
+ def pixel_warp(self, pts, imgs, intrinsics,
22
+ w2cs, img_wh=None):
23
+ """
24
+
25
+ :param pts: [N_rays, n_samples, 3]
26
+ :param imgs: [N_views, 3, H, W]
27
+ :param intrinsics: [N_views, 4, 4]
28
+ :param c2ws: [N_views, 4, 4]
29
+ :param img_wh:
30
+ :return:
31
+ """
32
+ if img_wh is None:
33
+ N_views, _, sizeH, sizeW = imgs.shape
34
+ img_wh = [sizeW, sizeH]
35
+
36
+ pts_color, valid_mask = sample_ptsFeatures_from_featureMaps(
37
+ pts, imgs, w2cs, intrinsics, img_wh,
38
+ proj_matrix=None, return_mask=True) # [N_views, c, N_rays, n_samples], [N_views, N_rays, n_samples]
39
+
40
+ pts_color = pts_color.permute(2, 3, 0, 1)
41
+ valid_mask = valid_mask.permute(1, 2, 0)
42
+
43
+ return pts_color, valid_mask # [N_rays, n_samples, N_views, 3] , [N_rays, n_samples, N_views]
44
+
45
+ def patch_warp(self, pts, uv, normals, src_imgs,
46
+ ref_intrinsic, src_intrinsics,
47
+ ref_c2w, src_c2ws, img_wh=None
48
+ ):
49
+ """
50
+
51
+ :param pts: [N_rays, n_samples, 3]
52
+ :param uv : [N_rays, 2] normalized in (-1, 1)
53
+ :param normals: [N_rays, n_samples, 3] The normal of pt in world space
54
+ :param src_imgs: [N_src, 3, h, w]
55
+ :param ref_intrinsic: [4,4]
56
+ :param src_intrinsics: [N_src, 4, 4]
57
+ :param ref_c2w: [4,4]
58
+ :param src_c2ws: [N_src, 4, 4]
59
+ :return:
60
+ """
61
+ device = pts.device
62
+
63
+ N_rays, n_samples, _ = pts.shape
64
+ N_pts = N_rays * n_samples
65
+
66
+ N_src, _, sizeH, sizeW = src_imgs.shape
67
+
68
+ if img_wh is not None:
69
+ sizeW, sizeH = img_wh[0], img_wh[1]
70
+
71
+ # scale uv from (-1, 1) to (0, W/H)
72
+ uv[:, 0] = (uv[:, 0] + 1) / 2. * (sizeW - 1)
73
+ uv[:, 1] = (uv[:, 1] + 1) / 2. * (sizeH - 1)
74
+
75
+ ref_intr = ref_intrinsic[:3, :3]
76
+ inv_ref_intr = torch.inverse(ref_intr)
77
+ src_intrs = src_intrinsics[:, :3, :3]
78
+ inv_src_intrs = torch.inverse(src_intrs)
79
+
80
+ ref_pose = ref_c2w
81
+ inv_ref_pose = torch.inverse(ref_pose)
82
+ src_poses = src_c2ws
83
+ inv_src_poses = torch.inverse(src_poses)
84
+
85
+ ref_cam_loc = ref_pose[:3, 3].unsqueeze(0) # [1, 3]
86
+ sampled_dists = torch.norm(pts - ref_cam_loc, dim=-1) # [N_pts, 1]
87
+
88
+ relative_proj = inv_src_poses @ ref_pose
89
+ R_rel = relative_proj[:, :3, :3]
90
+ t_rel = relative_proj[:, :3, 3:]
91
+ R_ref = inv_ref_pose[:3, :3]
92
+ t_ref = inv_ref_pose[:3, 3:]
93
+
94
+ pts = pts.view(-1, 3)
95
+ normals = normals.view(-1, 3)
96
+
97
+ with torch.no_grad():
98
+ rot_normals = R_ref @ normals.unsqueeze(-1) # [N_pts, 3, 1]
99
+ points_in_ref = R_ref @ pts.unsqueeze(
100
+ -1) + t_ref # [N_pts, 3, 1] points in the reference frame coordiantes system
101
+ d1 = torch.sum(rot_normals * points_in_ref, dim=1).unsqueeze(
102
+ 1) # distance from the plane to ref camera center
103
+
104
+ d2 = torch.sum(rot_normals.unsqueeze(1) * (-R_rel.transpose(1, 2) @ t_rel).unsqueeze(0),
105
+ dim=2) # distance from the plane to src camera center
106
+ valid_hom = (torch.abs(d1) > self.plane_dist_thresh) & (
107
+ torch.abs(d1 - d2) > self.plane_dist_thresh) & ((d2 / d1) < 1)
108
+
109
+ d1 = d1.squeeze()
110
+ sign = torch.sign(d1)
111
+ sign[sign == 0] = 1
112
+ d = torch.clamp(torch.abs(d1), 1e-8) * sign
113
+
114
+ H = src_intrs.unsqueeze(1) @ (
115
+ R_rel.unsqueeze(1) + t_rel.unsqueeze(1) @ rot_normals.view(1, N_pts, 1, 3) / d.view(1,
116
+ N_pts,
117
+ 1, 1)
118
+ ) @ inv_ref_intr.view(1, 1, 3, 3)
119
+
120
+ # replace invalid homs with fronto-parallel homographies
121
+ H_invalid = src_intrs.unsqueeze(1) @ (
122
+ R_rel.unsqueeze(1) + t_rel.unsqueeze(1) @ self.z_axis.to(device).view(1, 1, 1, 3).expand(-1, N_pts,
123
+ -1,
124
+ -1) / sampled_dists.view(
125
+ 1, N_pts, 1, 1)
126
+ ) @ inv_ref_intr.view(1, 1, 3, 3)
127
+ tmp_m = ~valid_hom.view(-1, N_src).t()
128
+ H[tmp_m] = H_invalid[tmp_m]
129
+
130
+ pixels = uv.view(N_rays, 1, 2) + self.offsets.float().to(device)
131
+ Npx = pixels.shape[1]
132
+ grid, warp_mask_full = self.patch_homography(H, pixels)
133
+
134
+ warp_mask_full = warp_mask_full & (grid[..., 0] < (sizeW - self.h_patch_size)) & (
135
+ grid[..., 1] < (sizeH - self.h_patch_size)) & (grid >= self.h_patch_size).all(dim=-1)
136
+ warp_mask_full = warp_mask_full.view(N_src, N_rays, n_samples, Npx)
137
+
138
+ grid = torch.clamp(normalize(grid, sizeH, sizeW), -10, 10)
139
+
140
+ sampled_rgb_val = F.grid_sample(src_imgs, grid.view(N_src, -1, 1, 2), align_corners=True).squeeze(
141
+ -1).transpose(1, 2)
142
+ sampled_rgb_val = sampled_rgb_val.view(N_src, N_rays, n_samples, Npx, 3)
143
+
144
+ warp_mask_full = warp_mask_full.permute(1, 2, 0, 3).contiguous() # (N_rays, n_samples, N_src, Npx)
145
+ sampled_rgb_val = sampled_rgb_val.permute(1, 2, 0, 3, 4).contiguous() # (N_rays, n_samples, N_src, Npx, 3)
146
+
147
+ return sampled_rgb_val, warp_mask_full
148
+
149
+ def patch_homography(self, H, uv):
150
+ N, Npx = uv.shape[:2]
151
+ Nsrc = H.shape[0]
152
+ H = H.view(Nsrc, N, -1, 3, 3)
153
+ hom_uv = add_hom(uv)
154
+
155
+ # einsum is 30 times faster
156
+ # tmp = (H.view(Nsrc, N, -1, 1, 3, 3) @ hom_uv.view(1, N, 1, -1, 3, 1)).squeeze(-1).view(Nsrc, -1, 3)
157
+ tmp = torch.einsum("vprik,pok->vproi", H, hom_uv).reshape(Nsrc, -1, 3)
158
+
159
+ grid = tmp[..., :2] / torch.clamp(tmp[..., 2:], 1e-8)
160
+ mask = tmp[..., 2] > 0
161
+ return grid, mask
162
+
163
+
164
+ def add_hom(pts):
165
+ try:
166
+ dev = pts.device
167
+ ones = torch.ones(pts.shape[:-1], device=dev).unsqueeze(-1)
168
+ return torch.cat((pts, ones), dim=-1)
169
+
170
+ except AttributeError:
171
+ ones = np.ones((pts.shape[0], 1))
172
+ return np.concatenate((pts, ones), axis=1)
173
+
174
+
175
+ def normalize(flow, h, w, clamp=None):
176
+ # either h and w are simple float or N torch.tensor where N batch size
177
+ try:
178
+ h.device
179
+
180
+ except AttributeError:
181
+ h = torch.tensor(h, device=flow.device).float().unsqueeze(0)
182
+ w = torch.tensor(w, device=flow.device).float().unsqueeze(0)
183
+
184
+ if len(flow.shape) == 4:
185
+ w = w.unsqueeze(1).unsqueeze(2)
186
+ h = h.unsqueeze(1).unsqueeze(2)
187
+ elif len(flow.shape) == 3:
188
+ w = w.unsqueeze(1)
189
+ h = h.unsqueeze(1)
190
+ elif len(flow.shape) == 5:
191
+ w = w.unsqueeze(0).unsqueeze(2).unsqueeze(2)
192
+ h = h.unsqueeze(0).unsqueeze(2).unsqueeze(2)
193
+
194
+ res = torch.empty_like(flow)
195
+ if res.shape[-1] == 3:
196
+ res[..., 2] = 1
197
+
198
+ # for grid_sample with align_corners=True
199
+ # https://github.com/pytorch/pytorch/blob/c371542efc31b1abfe6f388042aa3ab0cef935f2/aten/src/ATen/native/GridSampler.h#L33
200
+ res[..., 0] = 2 * flow[..., 0] / (w - 1) - 1
201
+ res[..., 1] = 2 * flow[..., 1] / (h - 1) - 1
202
+
203
+ if clamp:
204
+ return torch.clamp(res, -clamp, clamp)
205
+ else:
206
+ return res
207
+
208
+
209
+ def build_patch_offset(h_patch_size):
210
+ offsets = torch.arange(-h_patch_size, h_patch_size + 1)
211
+ return torch.stack(torch.meshgrid(offsets, offsets, indexing="ij")[::-1], dim=-1).view(1, -1, 2) # nb_pixels_patch * 2
SparseNeuS_demo_v1/models/projector.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # The codes are partly from IBRNet
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from models.render_utils import sample_ptsFeatures_from_featureMaps, sample_ptsFeatures_from_featureVolume
6
+
7
+ def safe_l2_normalize(x, dim=None, eps=1e-6):
8
+ return F.normalize(x, p=2, dim=dim, eps=eps)
9
+
10
+ class Projector():
11
+ """
12
+ Obtain features from geometryVolume and rendering_feature_maps for generalized rendering
13
+ """
14
+
15
+ def compute_angle(self, xyz, query_c2w, supporting_c2ws):
16
+ """
17
+
18
+ :param xyz: [N_rays, n_samples,3 ]
19
+ :param query_c2w: [1,4,4]
20
+ :param supporting_c2ws: [n,4,4]
21
+ :return:
22
+ """
23
+ N_rays, n_samples, _ = xyz.shape
24
+ num_views = supporting_c2ws.shape[0]
25
+ xyz = xyz.reshape(-1, 3)
26
+
27
+ ray2tar_pose = (query_c2w[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0))
28
+ ray2tar_pose /= (torch.norm(ray2tar_pose, dim=-1, keepdim=True) + 1e-6)
29
+ ray2support_pose = (supporting_c2ws[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0))
30
+ ray2support_pose /= (torch.norm(ray2support_pose, dim=-1, keepdim=True) + 1e-6)
31
+ ray_diff = ray2tar_pose - ray2support_pose
32
+ ray_diff_norm = torch.norm(ray_diff, dim=-1, keepdim=True)
33
+ ray_diff_dot = torch.sum(ray2tar_pose * ray2support_pose, dim=-1, keepdim=True)
34
+ ray_diff_direction = ray_diff / torch.clamp(ray_diff_norm, min=1e-6)
35
+ ray_diff = torch.cat([ray_diff_direction, ray_diff_dot], dim=-1)
36
+ ray_diff = ray_diff.reshape((num_views, N_rays, n_samples, 4)) # the last dimension (4) is dot-product
37
+ return ray_diff.detach()
38
+
39
+
40
+ def compute_angle_view_independent(self, xyz, surface_normals, supporting_c2ws):
41
+ """
42
+
43
+ :param xyz: [N_rays, n_samples,3 ]
44
+ :param surface_normals: [N_rays, n_samples,3 ]
45
+ :param supporting_c2ws: [n,4,4]
46
+ :return:
47
+ """
48
+ N_rays, n_samples, _ = xyz.shape
49
+ num_views = supporting_c2ws.shape[0]
50
+ xyz = xyz.reshape(-1, 3)
51
+
52
+ ray2tar_pose = surface_normals
53
+ ray2support_pose = (supporting_c2ws[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0))
54
+ ray2support_pose /= (torch.norm(ray2support_pose, dim=-1, keepdim=True) + 1e-6)
55
+ ray_diff = ray2tar_pose - ray2support_pose
56
+ ray_diff_norm = torch.norm(ray_diff, dim=-1, keepdim=True)
57
+ ray_diff_dot = torch.sum(ray2tar_pose * ray2support_pose, dim=-1, keepdim=True)
58
+ ray_diff_direction = ray_diff / torch.clamp(ray_diff_norm, min=1e-6)
59
+ ray_diff = torch.cat([ray_diff_direction, ray_diff_dot], dim=-1)
60
+ ray_diff = ray_diff.reshape((num_views, N_rays, n_samples, 4)) # the last dimension (4) is dot-product,
61
+ # and the first three dimensions is the normalized ray diff vector
62
+ return ray_diff.detach()
63
+
64
+ @torch.no_grad()
65
+ def compute_z_diff(self, xyz, w2cs, intrinsics, pred_depth_values):
66
+ """
67
+ compute the depth difference of query pts projected on the image and the predicted depth values of the image
68
+ :param xyz: [N_rays, n_samples,3 ]
69
+ :param w2cs: [N_views, 4, 4]
70
+ :param intrinsics: [N_views, 3, 3]
71
+ :param pred_depth_values: [N_views, N_rays, n_samples,1 ]
72
+ :param pred_depth_masks: [N_views, N_rays, n_samples]
73
+ :return:
74
+ """
75
+ device = xyz.device
76
+ N_views = w2cs.shape[0]
77
+ N_rays, n_samples, _ = xyz.shape
78
+ proj_matrix = torch.matmul(intrinsics, w2cs[:, :3, :])
79
+
80
+ proj_rot = proj_matrix[:, :3, :3]
81
+ proj_trans = proj_matrix[:, :3, 3:]
82
+
83
+ batch_xyz = xyz.permute(2, 0, 1).contiguous().view(1, 3, N_rays * n_samples).repeat(N_views, 1, 1)
84
+
85
+ proj_xyz = proj_rot.bmm(batch_xyz) + proj_trans
86
+
87
+ # X = proj_xyz[:, 0]
88
+ # Y = proj_xyz[:, 1]
89
+ Z = proj_xyz[:, 2].clamp(min=1e-3) # [N_views, N_rays*n_samples]
90
+ proj_z = Z.view(N_views, N_rays, n_samples, 1)
91
+
92
+ z_diff = proj_z - pred_depth_values # [N_views, N_rays, n_samples,1 ]
93
+
94
+ return z_diff
95
+
96
+ def compute(self,
97
+ pts,
98
+ # * 3d geometry feature volumes
99
+ geometryVolume=None,
100
+ geometryVolumeMask=None,
101
+ vol_dims=None,
102
+ partial_vol_origin=None,
103
+ vol_size=None,
104
+ # * 2d rendering feature maps
105
+ rendering_feature_maps=None,
106
+ color_maps=None,
107
+ w2cs=None,
108
+ intrinsics=None,
109
+ img_wh=None,
110
+ query_img_idx=0, # the index of the N_views dim for rendering
111
+ query_c2w=None,
112
+ pred_depth_maps=None, # no use here
113
+ pred_depth_masks=None # no use here
114
+ ):
115
+ """
116
+ extract features of pts for rendering
117
+ :param pts:
118
+ :param geometryVolume:
119
+ :param vol_dims:
120
+ :param partial_vol_origin:
121
+ :param vol_size:
122
+ :param rendering_feature_maps:
123
+ :param color_maps:
124
+ :param w2cs:
125
+ :param intrinsics:
126
+ :param img_wh:
127
+ :param rendering_img_idx: by default, we render the first view of w2cs
128
+ :return:
129
+ """
130
+ device = pts.device
131
+ c2ws = torch.inverse(w2cs)
132
+
133
+ if len(pts.shape) == 2:
134
+ pts = pts[None, :, :]
135
+
136
+ N_rays, n_samples, _ = pts.shape
137
+ N_views = rendering_feature_maps.shape[0] # shape (N_views, C, H, W)
138
+
139
+ supporting_img_idxs = torch.LongTensor([x for x in range(N_views) if x != query_img_idx]).to(device)
140
+ query_img_idx = torch.LongTensor([query_img_idx]).to(device)
141
+
142
+ if query_c2w is None and query_img_idx > -1:
143
+ query_c2w = torch.index_select(c2ws, 0, query_img_idx)
144
+ supporting_c2ws = torch.index_select(c2ws, 0, supporting_img_idxs)
145
+ supporting_w2cs = torch.index_select(w2cs, 0, supporting_img_idxs)
146
+ supporting_rendering_feature_maps = torch.index_select(rendering_feature_maps, 0, supporting_img_idxs)
147
+ supporting_color_maps = torch.index_select(color_maps, 0, supporting_img_idxs)
148
+ supporting_intrinsics = torch.index_select(intrinsics, 0, supporting_img_idxs)
149
+
150
+ if pred_depth_maps is not None:
151
+ supporting_depth_maps = torch.index_select(pred_depth_maps, 0, supporting_img_idxs)
152
+ supporting_depth_masks = torch.index_select(pred_depth_masks, 0, supporting_img_idxs)
153
+ # print("N_supporting_views: ", N_views - 1)
154
+ N_supporting_views = N_views - 1
155
+ else:
156
+ supporting_c2ws = c2ws
157
+ supporting_w2cs = w2cs
158
+ supporting_rendering_feature_maps = rendering_feature_maps
159
+ supporting_color_maps = color_maps
160
+ supporting_intrinsics = intrinsics
161
+ supporting_depth_maps = pred_depth_masks
162
+ supporting_depth_masks = pred_depth_masks
163
+ # print("N_supporting_views: ", N_views)
164
+ N_supporting_views = N_views
165
+ # import ipdb; ipdb.set_trace()
166
+ if geometryVolume is not None:
167
+ # * sample feature of pts from 3D feature volume
168
+ pts_geometry_feature, pts_geometry_masks_0 = sample_ptsFeatures_from_featureVolume(
169
+ pts, geometryVolume, vol_dims,
170
+ partial_vol_origin, vol_size) # [N_rays, n_samples, C], [N_rays, n_samples]
171
+
172
+ if len(geometryVolumeMask.shape) == 3:
173
+ geometryVolumeMask = geometryVolumeMask[None, :, :, :]
174
+
175
+ pts_geometry_masks_1, _ = sample_ptsFeatures_from_featureVolume(
176
+ pts, geometryVolumeMask.to(geometryVolume.dtype), vol_dims,
177
+ partial_vol_origin, vol_size) # [N_rays, n_samples, C]
178
+
179
+ pts_geometry_masks = pts_geometry_masks_0 & (pts_geometry_masks_1[..., 0] > 0)
180
+ else:
181
+ pts_geometry_feature = None
182
+ pts_geometry_masks = None
183
+
184
+ # * sample feature of pts from 2D feature maps
185
+ pts_rendering_feats, pts_rendering_mask = sample_ptsFeatures_from_featureMaps(
186
+ pts, supporting_rendering_feature_maps, supporting_w2cs,
187
+ supporting_intrinsics, img_wh,
188
+ return_mask=True) # [N_views, C, N_rays, n_samples], # [N_views, N_rays, n_samples]
189
+ # import ipdb; ipdb.set_trace()
190
+ # * size (N_views, N_rays*n_samples, c)
191
+ pts_rendering_feats = pts_rendering_feats.permute(0, 2, 3, 1).contiguous()
192
+
193
+ pts_rendering_colors = sample_ptsFeatures_from_featureMaps(pts, supporting_color_maps, supporting_w2cs,
194
+ supporting_intrinsics, img_wh)
195
+ # * size (N_views, N_rays*n_samples, c)
196
+ pts_rendering_colors = pts_rendering_colors.permute(0, 2, 3, 1).contiguous()
197
+
198
+ rgb_feats = torch.cat([pts_rendering_colors, pts_rendering_feats], dim=-1) # [N_views, N_rays, n_samples, 3+c]
199
+
200
+
201
+ ray_diff = self.compute_angle(pts, query_c2w, supporting_c2ws) # [N_views, N_rays, n_samples, 4]
202
+ # import ipdb; ipdb.set_trace()
203
+ if pts_geometry_masks is not None:
204
+ final_mask = pts_geometry_masks[None, :, :].repeat(N_supporting_views, 1, 1) & \
205
+ pts_rendering_mask # [N_views, N_rays, n_samples]
206
+ else:
207
+ final_mask = pts_rendering_mask
208
+ # import ipdb; ipdb.set_trace()
209
+ z_diff, pts_pred_depth_masks = None, None
210
+
211
+ if pred_depth_maps is not None:
212
+ pts_pred_depth_values = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_maps, supporting_w2cs,
213
+ supporting_intrinsics, img_wh)
214
+ pts_pred_depth_values = pts_pred_depth_values.permute(0, 2, 3,
215
+ 1).contiguous() # (N_views, N_rays*n_samples, 1)
216
+
217
+ # - pts_pred_depth_masks are critical than final_mask,
218
+ # - the ray containing few invalid pts will be treated invalid
219
+ pts_pred_depth_masks = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_masks.float(),
220
+ supporting_w2cs,
221
+ supporting_intrinsics, img_wh)
222
+
223
+ pts_pred_depth_masks = pts_pred_depth_masks.permute(0, 2, 3, 1).contiguous()[:, :, :,
224
+ 0] # (N_views, N_rays*n_samples)
225
+
226
+ z_diff = self.compute_z_diff(pts, supporting_w2cs, supporting_intrinsics, pts_pred_depth_values)
227
+ # import ipdb; ipdb.set_trace()
228
+ return pts_geometry_feature, rgb_feats, ray_diff, final_mask, z_diff, pts_pred_depth_masks
229
+
230
+
231
+ def compute_view_independent(
232
+ self,
233
+ pts,
234
+ # * 3d geometry feature volumes
235
+ geometryVolume=None,
236
+ geometryVolumeMask=None,
237
+ sdf_network=None,
238
+ lod=0,
239
+ vol_dims=None,
240
+ partial_vol_origin=None,
241
+ vol_size=None,
242
+ # * 2d rendering feature maps
243
+ rendering_feature_maps=None,
244
+ color_maps=None,
245
+ w2cs=None,
246
+ target_candidate_w2cs=None,
247
+ intrinsics=None,
248
+ img_wh=None,
249
+ query_img_idx=0, # the index of the N_views dim for rendering
250
+ query_c2w=None,
251
+ pred_depth_maps=None, # no use here
252
+ pred_depth_masks=None # no use here
253
+ ):
254
+ """
255
+ extract features of pts for rendering
256
+ :param pts:
257
+ :param geometryVolume:
258
+ :param vol_dims:
259
+ :param partial_vol_origin:
260
+ :param vol_size:
261
+ :param rendering_feature_maps:
262
+ :param color_maps:
263
+ :param w2cs:
264
+ :param intrinsics:
265
+ :param img_wh:
266
+ :param rendering_img_idx: by default, we render the first view of w2cs
267
+ :return:
268
+ """
269
+ device = pts.device
270
+ c2ws = torch.inverse(w2cs)
271
+
272
+ if len(pts.shape) == 2:
273
+ pts = pts[None, :, :]
274
+
275
+ N_rays, n_samples, _ = pts.shape
276
+ N_views = rendering_feature_maps.shape[0] # shape (N_views, C, H, W)
277
+
278
+ supporting_img_idxs = torch.LongTensor([x for x in range(N_views) if x != query_img_idx]).to(device)
279
+ query_img_idx = torch.LongTensor([query_img_idx]).to(device)
280
+
281
+ if query_c2w is None and query_img_idx > -1:
282
+ query_c2w = torch.index_select(c2ws, 0, query_img_idx)
283
+ supporting_c2ws = torch.index_select(c2ws, 0, supporting_img_idxs)
284
+ supporting_w2cs = torch.index_select(w2cs, 0, supporting_img_idxs)
285
+ supporting_rendering_feature_maps = torch.index_select(rendering_feature_maps, 0, supporting_img_idxs)
286
+ supporting_color_maps = torch.index_select(color_maps, 0, supporting_img_idxs)
287
+ supporting_intrinsics = torch.index_select(intrinsics, 0, supporting_img_idxs)
288
+
289
+ if pred_depth_maps is not None:
290
+ supporting_depth_maps = torch.index_select(pred_depth_maps, 0, supporting_img_idxs)
291
+ supporting_depth_masks = torch.index_select(pred_depth_masks, 0, supporting_img_idxs)
292
+ # print("N_supporting_views: ", N_views - 1)
293
+ N_supporting_views = N_views - 1
294
+ else:
295
+ supporting_c2ws = c2ws
296
+ supporting_w2cs = w2cs
297
+ supporting_rendering_feature_maps = rendering_feature_maps
298
+ supporting_color_maps = color_maps
299
+ supporting_intrinsics = intrinsics
300
+ supporting_depth_maps = pred_depth_masks
301
+ supporting_depth_masks = pred_depth_masks
302
+ # print("N_supporting_views: ", N_views)
303
+ N_supporting_views = N_views
304
+ # import ipdb; ipdb.set_trace()
305
+ if geometryVolume is not None:
306
+ # * sample feature of pts from 3D feature volume
307
+ pts_geometry_feature, pts_geometry_masks_0 = sample_ptsFeatures_from_featureVolume(
308
+ pts, geometryVolume, vol_dims,
309
+ partial_vol_origin, vol_size) # [N_rays, n_samples, C], [N_rays, n_samples]
310
+
311
+ if len(geometryVolumeMask.shape) == 3:
312
+ geometryVolumeMask = geometryVolumeMask[None, :, :, :]
313
+
314
+ pts_geometry_masks_1, _ = sample_ptsFeatures_from_featureVolume(
315
+ pts, geometryVolumeMask.to(geometryVolume.dtype), vol_dims,
316
+ partial_vol_origin, vol_size) # [N_rays, n_samples, C]
317
+
318
+ pts_geometry_masks = pts_geometry_masks_0 & (pts_geometry_masks_1[..., 0] > 0)
319
+ else:
320
+ pts_geometry_feature = None
321
+ pts_geometry_masks = None
322
+
323
+ # * sample feature of pts from 2D feature maps
324
+ pts_rendering_feats, pts_rendering_mask = sample_ptsFeatures_from_featureMaps(
325
+ pts, supporting_rendering_feature_maps, supporting_w2cs,
326
+ supporting_intrinsics, img_wh,
327
+ return_mask=True) # [N_views, C, N_rays, n_samples], # [N_views, N_rays, n_samples]
328
+
329
+ # * size (N_views, N_rays*n_samples, c)
330
+ pts_rendering_feats = pts_rendering_feats.permute(0, 2, 3, 1).contiguous()
331
+
332
+ pts_rendering_colors = sample_ptsFeatures_from_featureMaps(pts, supporting_color_maps, supporting_w2cs,
333
+ supporting_intrinsics, img_wh)
334
+ # * size (N_views, N_rays*n_samples, c)
335
+ pts_rendering_colors = pts_rendering_colors.permute(0, 2, 3, 1).contiguous()
336
+
337
+ rgb_feats = torch.cat([pts_rendering_colors, pts_rendering_feats], dim=-1) # [N_views, N_rays, n_samples, 3+c]
338
+
339
+ # import ipdb; ipdb.set_trace()
340
+
341
+ gradients = sdf_network.gradient(
342
+ pts.reshape(-1, 3), # pts.squeeze(0),
343
+ geometryVolume.unsqueeze(0),
344
+ lod=lod
345
+ ).squeeze()
346
+
347
+ surface_normals = safe_l2_normalize(gradients, dim=-1) # [npts, 3]
348
+ # input normals
349
+ ren_ray_diff = self.compute_angle_view_independent(
350
+ xyz=pts,
351
+ surface_normals=surface_normals,
352
+ supporting_c2ws=supporting_c2ws
353
+ )
354
+
355
+ # # choose closest target view direction from 32 candidate views
356
+ # # choose the closest source view as view direction instead of the normals vectors
357
+ # pts2src_centers = safe_l2_normalize((supporting_c2ws[:, :3, 3].unsqueeze(1) - pts)) # [N_views, npts, 3]
358
+
359
+ # cosine_distance = torch.sum(pts2src_centers * surface_normals, dim=-1, keepdim=True) # [N_views, npts, 1]
360
+ # # choose the largest cosine distance as the view direction
361
+ # max_idx = torch.argmax(cosine_distance, dim=0) # [npts, 1]
362
+
363
+ # chosen_view_direction = pts2src_centers[max_idx.squeeze(), torch.arange(pts.shape[1]), :] # [npts, 3]
364
+ # ren_ray_diff = self.compute_angle_view_independent(
365
+ # xyz=pts,
366
+ # surface_normals=chosen_view_direction,
367
+ # supporting_c2ws=supporting_c2ws
368
+ # )
369
+
370
+
371
+
372
+ # # choose closest target view direction from 8 candidate views
373
+ # # choose the closest source view as view direction instead of the normals vectors
374
+ # target_candidate_c2ws = torch.inverse(target_candidate_w2cs)
375
+ # pts2src_centers = safe_l2_normalize((target_candidate_c2ws[:, :3, 3].unsqueeze(1) - pts)) # [N_views, npts, 3]
376
+
377
+ # cosine_distance = torch.sum(pts2src_centers * surface_normals, dim=-1, keepdim=True) # [N_views, npts, 1]
378
+ # # choose the largest cosine distance as the view direction
379
+ # max_idx = torch.argmax(cosine_distance, dim=0) # [npts, 1]
380
+
381
+ # chosen_view_direction = pts2src_centers[max_idx.squeeze(), torch.arange(pts.shape[1]), :] # [npts, 3]
382
+ # ren_ray_diff = self.compute_angle_view_independent(
383
+ # xyz=pts,
384
+ # surface_normals=chosen_view_direction,
385
+ # supporting_c2ws=supporting_c2ws
386
+ # )
387
+
388
+
389
+ # ray_diff = self.compute_angle(pts, query_c2w, supporting_c2ws) # [N_views, N_rays, n_samples, 4]
390
+ # import ipdb; ipdb.set_trace()
391
+
392
+
393
+ # input_directions = safe_l2_normalize(pts)
394
+ # ren_ray_diff = self.compute_angle_view_independent(
395
+ # xyz=pts,
396
+ # surface_normals=input_directions,
397
+ # supporting_c2ws=supporting_c2ws
398
+ # )
399
+
400
+ if pts_geometry_masks is not None:
401
+ final_mask = pts_geometry_masks[None, :, :].repeat(N_supporting_views, 1, 1) & \
402
+ pts_rendering_mask # [N_views, N_rays, n_samples]
403
+ else:
404
+ final_mask = pts_rendering_mask
405
+ # import ipdb; ipdb.set_trace()
406
+ z_diff, pts_pred_depth_masks = None, None
407
+
408
+ if pred_depth_maps is not None:
409
+ pts_pred_depth_values = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_maps, supporting_w2cs,
410
+ supporting_intrinsics, img_wh)
411
+ pts_pred_depth_values = pts_pred_depth_values.permute(0, 2, 3,
412
+ 1).contiguous() # (N_views, N_rays*n_samples, 1)
413
+
414
+ # - pts_pred_depth_masks are critical than final_mask,
415
+ # - the ray containing few invalid pts will be treated invalid
416
+ pts_pred_depth_masks = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_masks.float(),
417
+ supporting_w2cs,
418
+ supporting_intrinsics, img_wh)
419
+
420
+ pts_pred_depth_masks = pts_pred_depth_masks.permute(0, 2, 3, 1).contiguous()[:, :, :,
421
+ 0] # (N_views, N_rays*n_samples)
422
+
423
+ z_diff = self.compute_z_diff(pts, supporting_w2cs, supporting_intrinsics, pts_pred_depth_values)
424
+ # import ipdb; ipdb.set_trace()
425
+ return pts_geometry_feature, rgb_feats, ren_ray_diff, final_mask, z_diff, pts_pred_depth_masks
SparseNeuS_demo_v1/models/rays.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, torch
2
+ import numpy as np
3
+
4
+ import torch.nn.functional as F
5
+
6
+ def build_patch_offset(h_patch_size):
7
+ offsets = torch.arange(-h_patch_size, h_patch_size + 1)
8
+ return torch.stack(torch.meshgrid(offsets, offsets)[::-1], dim=-1).view(1, -1, 2) # nb_pixels_patch * 2
9
+
10
+
11
+ def gen_rays_from_single_image(H, W, image, intrinsic, c2w, depth=None, mask=None):
12
+ """
13
+ generate rays in world space, for image image
14
+ :param H:
15
+ :param W:
16
+ :param intrinsics: [3,3]
17
+ :param c2ws: [4,4]
18
+ :return:
19
+ """
20
+ device = image.device
21
+ ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H),
22
+ torch.linspace(0, W - 1, W), indexing="ij") # pytorch's meshgrid has indexing='ij'
23
+ p = torch.stack([xs, ys, torch.ones_like(ys)], dim=-1) # H, W, 3
24
+
25
+ # normalized ndc uv coordinates, (-1, 1)
26
+ ndc_u = 2 * xs / (W - 1) - 1
27
+ ndc_v = 2 * ys / (H - 1) - 1
28
+ rays_ndc_uv = torch.stack([ndc_u, ndc_v], dim=-1).view(-1, 2).float().to(device)
29
+
30
+ intrinsic_inv = torch.inverse(intrinsic)
31
+
32
+ p = p.view(-1, 3).float().to(device) # N_rays, 3
33
+ p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze() # N_rays, 3
34
+ rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # N_rays, 3
35
+ rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze() # N_rays, 3
36
+ rays_o = c2w[None, :3, 3].expand(rays_v.shape) # N_rays, 3
37
+
38
+ image = image.permute(1, 2, 0)
39
+ color = image.view(-1, 3)
40
+ depth = depth.view(-1, 1) if depth is not None else None
41
+ mask = mask.view(-1, 1) if mask is not None else torch.ones([H * W, 1]).to(device)
42
+ sample = {
43
+ 'rays_o': rays_o,
44
+ 'rays_v': rays_v,
45
+ 'rays_ndc_uv': rays_ndc_uv,
46
+ 'rays_color': color,
47
+ # 'rays_depth': depth,
48
+ 'rays_mask': mask,
49
+ 'rays_norm_XYZ_cam': p # - XYZ_cam, before multiply depth
50
+ }
51
+ if depth is not None:
52
+ sample['rays_depth'] = depth
53
+
54
+ return sample
55
+
56
+
57
+ def gen_random_rays_from_single_image(H, W, N_rays, image, intrinsic, c2w, depth=None, mask=None, dilated_mask=None,
58
+ importance_sample=False, h_patch_size=3):
59
+ """
60
+ generate random rays in world space, for a single image
61
+ :param H:
62
+ :param W:
63
+ :param N_rays:
64
+ :param image: [3, H, W]
65
+ :param intrinsic: [3,3]
66
+ :param c2w: [4,4]
67
+ :param depth: [H, W]
68
+ :param mask: [H, W]
69
+ :return:
70
+ """
71
+ device = image.device
72
+
73
+ if dilated_mask is None:
74
+ dilated_mask = mask
75
+
76
+ if not importance_sample:
77
+ pixels_x = torch.randint(low=0, high=W, size=[N_rays])
78
+ pixels_y = torch.randint(low=0, high=H, size=[N_rays])
79
+ elif importance_sample and dilated_mask is not None: # sample more pts in the valid mask regions
80
+ pixels_x_1 = torch.randint(low=0, high=W, size=[N_rays // 4])
81
+ pixels_y_1 = torch.randint(low=0, high=H, size=[N_rays // 4])
82
+
83
+ ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H),
84
+ torch.linspace(0, W - 1, W), indexing="ij") # pytorch's meshgrid has indexing='ij'
85
+ p = torch.stack([xs, ys], dim=-1) # H, W, 2
86
+
87
+ try:
88
+ p_valid = p[dilated_mask > 0] # [num, 2]
89
+ random_idx = torch.randint(low=0, high=p_valid.shape[0], size=[N_rays // 4 * 3])
90
+ except:
91
+ print("dilated_mask.shape: ", dilated_mask.shape)
92
+ print("dilated_mask valid number", dilated_mask.sum())
93
+
94
+ raise ValueError("hhhh")
95
+ p_select = p_valid[random_idx] # [N_rays//2, 2]
96
+ pixels_x_2 = p_select[:, 0]
97
+ pixels_y_2 = p_select[:, 1]
98
+
99
+ pixels_x = torch.cat([pixels_x_1, pixels_x_2], dim=0).to(torch.int64)
100
+ pixels_y = torch.cat([pixels_y_1, pixels_y_2], dim=0).to(torch.int64)
101
+
102
+ # - crop patch from images
103
+ offsets = build_patch_offset(h_patch_size).to(device)
104
+ grid_patch = torch.stack([pixels_x, pixels_y], dim=-1).view(-1, 1, 2) + offsets.float() # [N_pts, Npx, 2]
105
+ patch_mask = (pixels_x > h_patch_size) * (pixels_x < (W - h_patch_size)) * (pixels_y > h_patch_size) * (
106
+ pixels_y < H - h_patch_size) # [N_pts]
107
+ grid_patch_u = 2 * grid_patch[:, :, 0] / (W - 1) - 1
108
+ grid_patch_v = 2 * grid_patch[:, :, 1] / (H - 1) - 1
109
+ grid_patch_uv = torch.stack([grid_patch_u, grid_patch_v], dim=-1) # [N_pts, Npx, 2]
110
+ patch_color = F.grid_sample(image[None, :, :, :], grid_patch_uv[None, :, :, :], mode='bilinear',
111
+ padding_mode='zeros',align_corners=True)[0] # [3, N_pts, Npx]
112
+ patch_color = patch_color.permute(1, 2, 0).contiguous()
113
+
114
+ # normalized ndc uv coordinates, (-1, 1)
115
+ ndc_u = 2 * pixels_x / (W - 1) - 1
116
+ ndc_v = 2 * pixels_y / (H - 1) - 1
117
+ rays_ndc_uv = torch.stack([ndc_u, ndc_v], dim=-1).view(-1, 2).float().to(device)
118
+
119
+ image = image.permute(1, 2, 0) # H ,W, C
120
+ color = image[(pixels_y, pixels_x)] # N_rays, 3
121
+
122
+ if mask is not None:
123
+ mask = mask[(pixels_y, pixels_x)] # N_rays
124
+ patch_mask = patch_mask * mask # N_rays
125
+ mask = mask.view(-1, 1)
126
+ else:
127
+ mask = torch.ones([N_rays, 1])
128
+
129
+ if depth is not None:
130
+ depth = depth[(pixels_y, pixels_x)] # N_rays
131
+ depth = depth.view(-1, 1)
132
+
133
+ intrinsic_inv = torch.inverse(intrinsic)
134
+
135
+ p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float().to(device) # N_rays, 3
136
+ p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze() # N_rays, 3
137
+ rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # N_rays, 3
138
+ rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze() # N_rays, 3
139
+ rays_o = c2w[None, :3, 3].expand(rays_v.shape) # N_rays, 3
140
+
141
+ sample = {
142
+ 'rays_o': rays_o,
143
+ 'rays_v': rays_v,
144
+ 'rays_ndc_uv': rays_ndc_uv,
145
+ 'rays_color': color,
146
+ # 'rays_depth': depth,
147
+ 'rays_mask': mask,
148
+ 'rays_norm_XYZ_cam': p, # - XYZ_cam, before multiply depth,
149
+ 'rays_patch_color': patch_color,
150
+ 'rays_patch_mask': patch_mask.view(-1, 1)
151
+ }
152
+
153
+ if depth is not None:
154
+ sample['rays_depth'] = depth
155
+
156
+ return sample
157
+
158
+
159
+ def gen_random_rays_of_patch_from_single_image(H, W, N_rays, num_neighboring_pts, patch_size,
160
+ image, intrinsic, c2w, depth=None, mask=None):
161
+ """
162
+ generate random rays in world space, for a single image
163
+ sample rays from local patches
164
+ :param H:
165
+ :param W:
166
+ :param N_rays: the number of center rays of patches
167
+ :param image: [3, H, W]
168
+ :param intrinsic: [3,3]
169
+ :param c2w: [4,4]
170
+ :param depth: [H, W]
171
+ :param mask: [H, W]
172
+ :return:
173
+ """
174
+ device = image.device
175
+ patch_radius_max = patch_size // 2
176
+
177
+ unit_u = 2 / (W - 1)
178
+ unit_v = 2 / (H - 1)
179
+
180
+ pixels_x_center = torch.randint(low=patch_size, high=W - patch_size, size=[N_rays])
181
+ pixels_y_center = torch.randint(low=patch_size, high=H - patch_size, size=[N_rays])
182
+
183
+ # normalized ndc uv coordinates, (-1, 1)
184
+ ndc_u_center = 2 * pixels_x_center / (W - 1) - 1
185
+ ndc_v_center = 2 * pixels_y_center / (H - 1) - 1
186
+ ndc_uv_center = torch.stack([ndc_u_center, ndc_v_center], dim=-1).view(-1, 2).float().to(device)[:, None,
187
+ :] # [N_rays, 1, 2]
188
+
189
+ shift_u, shift_v = torch.rand([N_rays, num_neighboring_pts, 1]), torch.rand(
190
+ [N_rays, num_neighboring_pts, 1]) # uniform distribution of [0,1)
191
+ shift_u = 2 * (shift_u - 0.5) # mapping to [-1, 1)
192
+ shift_v = 2 * (shift_v - 0.5)
193
+
194
+ # - avoid sample points which are too close to center point
195
+ shift_uv = torch.cat([(shift_u * patch_radius_max) * unit_u, (shift_v * patch_radius_max) * unit_v],
196
+ dim=-1) # [N_rays, num_npts, 2]
197
+ neighboring_pts_uv = ndc_uv_center + shift_uv # [N_rays, num_npts, 2]
198
+
199
+ sampled_pts_uv = torch.cat([ndc_uv_center, neighboring_pts_uv], dim=1) # concat the center point
200
+
201
+ # sample the gts
202
+ color = F.grid_sample(image[None, :, :, :], sampled_pts_uv[None, :, :, :], mode='bilinear',
203
+ align_corners=True)[0] # [3, N_rays, num_npts]
204
+ depth = F.grid_sample(depth[None, None, :, :], sampled_pts_uv[None, :, :, :], mode='bilinear',
205
+ align_corners=True)[0] # [1, N_rays, num_npts]
206
+
207
+ mask = F.grid_sample(mask[None, None, :, :].to(torch.float32), sampled_pts_uv[None, :, :, :], mode='nearest',
208
+ align_corners=True).to(torch.int64)[0] # [1, N_rays, num_npts]
209
+
210
+ intrinsic_inv = torch.inverse(intrinsic)
211
+
212
+ sampled_pts_uv = sampled_pts_uv.view(N_rays * (1 + num_neighboring_pts), 2)
213
+ color = color.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 3)
214
+ depth = depth.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 1)
215
+ mask = mask.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 1)
216
+
217
+ pixels_x = (sampled_pts_uv[:, 0] + 1) * (W - 1) / 2
218
+ pixels_y = (sampled_pts_uv[:, 1] + 1) * (H - 1) / 2
219
+ p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float().to(device) # N_rays*num_pts, 3
220
+ p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze() # N_rays*num_pts, 3
221
+ rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # N_rays*num_pts, 3
222
+ rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze() # N_rays*num_pts, 3
223
+ rays_o = c2w[None, :3, 3].expand(rays_v.shape) # N_rays*num_pts, 3
224
+
225
+ sample = {
226
+ 'rays_o': rays_o,
227
+ 'rays_v': rays_v,
228
+ 'rays_ndc_uv': sampled_pts_uv,
229
+ 'rays_color': color,
230
+ 'rays_depth': depth,
231
+ 'rays_mask': mask,
232
+ # 'rays_norm_XYZ_cam': p # - XYZ_cam, before multiply depth
233
+ }
234
+
235
+ return sample
236
+
237
+
238
+ def gen_random_rays_from_batch_images(H, W, N_rays, images, intrinsics, c2ws, depths=None, masks=None):
239
+ """
240
+
241
+ :param H:
242
+ :param W:
243
+ :param N_rays:
244
+ :param images: [B,3,H,W]
245
+ :param intrinsics: [B, 3, 3]
246
+ :param c2ws: [B, 4, 4]
247
+ :param depths: [B,H,W]
248
+ :param masks: [B,H,W]
249
+ :return:
250
+ """
251
+ assert len(images.shape) == 4
252
+
253
+ rays_o = []
254
+ rays_v = []
255
+ rays_color = []
256
+ rays_depth = []
257
+ rays_mask = []
258
+ for i in range(images.shape[0]):
259
+ sample = gen_random_rays_from_single_image(H, W, N_rays, images[i], intrinsics[i], c2ws[i],
260
+ depth=depths[i] if depths is not None else None,
261
+ mask=masks[i] if masks is not None else None)
262
+ rays_o.append(sample['rays_o'])
263
+ rays_v.append(sample['rays_v'])
264
+ rays_color.append(sample['rays_color'])
265
+ if depths is not None:
266
+ rays_depth.append(sample['rays_depth'])
267
+ if masks is not None:
268
+ rays_mask.append(sample['rays_mask'])
269
+
270
+ sample = {
271
+ 'rays_o': torch.stack(rays_o, dim=0), # [batch, N_rays, 3]
272
+ 'rays_v': torch.stack(rays_v, dim=0),
273
+ 'rays_color': torch.stack(rays_color, dim=0),
274
+ 'rays_depth': torch.stack(rays_depth, dim=0) if depths is not None else None,
275
+ 'rays_mask': torch.stack(rays_mask, dim=0) if masks is not None else None
276
+ }
277
+ return sample
278
+
279
+
280
+ from scipy.spatial.transform import Rotation as Rot
281
+ from scipy.spatial.transform import Slerp
282
+
283
+
284
+ def gen_rays_between(c2w_0, c2w_1, intrinsic, ratio, H, W, resolution_level=1):
285
+ device = c2w_0.device
286
+
287
+ l = resolution_level
288
+ tx = torch.linspace(0, W - 1, W // l)
289
+ ty = torch.linspace(0, H - 1, H // l)
290
+ pixels_x, pixels_y = torch.meshgrid(tx, ty, indexing="ij")
291
+ p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).to(device) # W, H, 3
292
+
293
+ intrinsic_inv = torch.inverse(intrinsic[:3, :3])
294
+ p = torch.matmul(intrinsic_inv[None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3
295
+ rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3
296
+ trans = c2w_0[:3, 3] * (1.0 - ratio) + c2w_1[:3, 3] * ratio
297
+
298
+ pose_0 = c2w_0.detach().cpu().numpy()
299
+ pose_1 = c2w_1.detach().cpu().numpy()
300
+ pose_0 = np.linalg.inv(pose_0)
301
+ pose_1 = np.linalg.inv(pose_1)
302
+ rot_0 = pose_0[:3, :3]
303
+ rot_1 = pose_1[:3, :3]
304
+ rots = Rot.from_matrix(np.stack([rot_0, rot_1]))
305
+ key_times = [0, 1]
306
+ key_rots = [rot_0, rot_1]
307
+ slerp = Slerp(key_times, rots)
308
+ rot = slerp(ratio)
309
+ pose = np.diag([1.0, 1.0, 1.0, 1.0])
310
+ pose = pose.astype(np.float32)
311
+ pose[:3, :3] = rot.as_matrix()
312
+ pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3]
313
+ pose = np.linalg.inv(pose)
314
+
315
+ c2w = torch.from_numpy(pose).to(device)
316
+ rot = torch.from_numpy(pose[:3, :3]).cuda()
317
+ trans = torch.from_numpy(pose[:3, 3]).cuda()
318
+ rays_v = torch.matmul(rot[None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3
319
+ rays_o = trans[None, None, :3].expand(rays_v.shape) # W, H, 3
320
+ return c2w, rays_o.transpose(0, 1).contiguous().view(-1, 3), rays_v.transpose(0, 1).contiguous().view(-1, 3)
SparseNeuS_demo_v1/models/render_utils.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from ops.back_project import cam2pixel
6
+
7
+
8
+ def sample_pdf(bins, weights, n_samples, det=False):
9
+ '''
10
+ :param bins: tensor of shape [N_rays, M+1], M is the number of bins
11
+ :param weights: tensor of shape [N_rays, M]
12
+ :param N_samples: number of samples along each ray
13
+ :param det: if True, will perform deterministic sampling
14
+ :return: [N_rays, N_samples]
15
+ '''
16
+ device = weights.device
17
+
18
+ weights = weights + 1e-5 # prevent nans
19
+ pdf = weights / torch.sum(weights, -1, keepdim=True)
20
+ cdf = torch.cumsum(pdf, -1)
21
+ cdf = torch.cat([torch.zeros_like(cdf[..., :1]).to(device), cdf], -1)
22
+
23
+ # if bins.shape[1] != weights.shape[1]: # - minor modification, add this constraint
24
+ # cdf = torch.cat([torch.zeros_like(cdf[..., :1]).to(device), cdf], -1)
25
+ # Take uniform samples
26
+ if det:
27
+ u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples).to(device)
28
+ u = u.expand(list(cdf.shape[:-1]) + [n_samples])
29
+ else:
30
+ u = torch.rand(list(cdf.shape[:-1]) + [n_samples]).to(device)
31
+
32
+ # Invert CDF
33
+ u = u.contiguous()
34
+ # inds = searchsorted(cdf, u, side='right')
35
+ inds = torch.searchsorted(cdf, u, right=True)
36
+
37
+ below = torch.max(torch.zeros_like(inds - 1), inds - 1)
38
+ above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
39
+ inds_g = torch.stack([below, above], -1) # (batch, n_samples, 2)
40
+
41
+ matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
42
+ cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
43
+ bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
44
+
45
+ denom = (cdf_g[..., 1] - cdf_g[..., 0])
46
+ denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
47
+ t = (u - cdf_g[..., 0]) / denom
48
+ samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
49
+
50
+ # pdb.set_trace()
51
+ return samples
52
+
53
+
54
+ def sample_ptsFeatures_from_featureVolume(pts, featureVolume, vol_dims=None, partial_vol_origin=None, vol_size=None):
55
+ """
56
+ sample feature of pts_wrd from featureVolume, all in world space
57
+ :param pts: [N_rays, n_samples, 3]
58
+ :param featureVolume: [C,wX,wY,wZ]
59
+ :param vol_dims: [3] "3" for dimX, dimY, dimZ
60
+ :param partial_vol_origin: [3]
61
+ :return: pts_feature: [N_rays, n_samples, C]
62
+ :return: valid_mask: [N_rays]
63
+ """
64
+
65
+ N_rays, n_samples, _ = pts.shape
66
+
67
+ if vol_dims is None:
68
+ pts_normalized = pts
69
+ else:
70
+ # normalized to (-1, 1)
71
+ pts_normalized = 2 * (pts - partial_vol_origin[None, None, :]) / (vol_size * (vol_dims[None, None, :] - 1)) - 1
72
+
73
+ valid_mask = (torch.abs(pts_normalized[:, :, 0]) < 1.0) & (
74
+ torch.abs(pts_normalized[:, :, 1]) < 1.0) & (
75
+ torch.abs(pts_normalized[:, :, 2]) < 1.0) # (N_rays, n_samples)
76
+
77
+ pts_normalized = torch.flip(pts_normalized, dims=[-1]) # ! reverse the xyz for grid_sample
78
+
79
+ # ! checked grid_sample, (x,y,z) is for (D,H,W), reverse for (W,H,D)
80
+ pts_feature = F.grid_sample(featureVolume[None, :, :, :, :], pts_normalized[None, None, :, :, :],
81
+ padding_mode='zeros',
82
+ align_corners=True).view(-1, N_rays, n_samples) # [C, N_rays, n_samples]
83
+
84
+ pts_feature = pts_feature.permute(1, 2, 0) # [N_rays, n_samples, C]
85
+ return pts_feature, valid_mask
86
+
87
+
88
+ def sample_ptsFeatures_from_featureMaps(pts, featureMaps, w2cs, intrinsics, WH, proj_matrix=None, return_mask=False):
89
+ """
90
+ sample features of pts from 2d feature maps
91
+ :param pts: [N_rays, N_samples, 3]
92
+ :param featureMaps: [N_views, C, H, W]
93
+ :param w2cs: [N_views, 4, 4]
94
+ :param intrinsics: [N_views, 3, 3]
95
+ :param proj_matrix: [N_views, 4, 4]
96
+ :param HW:
97
+ :return:
98
+ """
99
+ # normalized to (-1, 1)
100
+ N_rays, n_samples, _ = pts.shape
101
+ N_views = featureMaps.shape[0]
102
+
103
+ if proj_matrix is None:
104
+ proj_matrix = torch.matmul(intrinsics, w2cs[:, :3, :])
105
+
106
+ pts = pts.permute(2, 0, 1).contiguous().view(1, 3, N_rays, n_samples).repeat(N_views, 1, 1, 1)
107
+ pixel_grids = cam2pixel(pts, proj_matrix[:, :3, :3], proj_matrix[:, :3, 3:],
108
+ 'zeros', sizeH=WH[1], sizeW=WH[0]) # (nviews, N_rays, n_samples, 2)
109
+
110
+ valid_mask = (torch.abs(pixel_grids[:, :, :, 0]) < 1.0) & (
111
+ torch.abs(pixel_grids[:, :, :, 1]) < 1.00) # (nviews, N_rays, n_samples)
112
+
113
+ pts_feature = F.grid_sample(featureMaps, pixel_grids,
114
+ padding_mode='zeros',
115
+ align_corners=True) # [N_views, C, N_rays, n_samples]
116
+
117
+ if return_mask:
118
+ return pts_feature, valid_mask
119
+ else:
120
+ return pts_feature
SparseNeuS_demo_v1/models/rendering_network.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # the codes are partly borrowed from IBRNet
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ torch._C._jit_set_profiling_executor(False)
8
+ torch._C._jit_set_profiling_mode(False)
9
+
10
+
11
+ # default tensorflow initialization of linear layers
12
+ def weights_init(m):
13
+ if isinstance(m, nn.Linear):
14
+ nn.init.kaiming_normal_(m.weight.data)
15
+ if m.bias is not None:
16
+ nn.init.zeros_(m.bias.data)
17
+
18
+
19
+ @torch.jit.script
20
+ def fused_mean_variance(x, weight):
21
+ mean = torch.sum(x * weight, dim=2, keepdim=True)
22
+ var = torch.sum(weight * (x - mean) ** 2, dim=2, keepdim=True)
23
+ return mean, var
24
+
25
+
26
+ class GeneralRenderingNetwork(nn.Module):
27
+ """
28
+ This model is not sensitive to finetuning
29
+ """
30
+
31
+ def __init__(self, in_geometry_feat_ch=8, in_rendering_feat_ch=56, anti_alias_pooling=True):
32
+ super(GeneralRenderingNetwork, self).__init__()
33
+
34
+ self.in_geometry_feat_ch = in_geometry_feat_ch
35
+ self.in_rendering_feat_ch = in_rendering_feat_ch
36
+ self.anti_alias_pooling = anti_alias_pooling
37
+
38
+ if self.anti_alias_pooling:
39
+ self.s = nn.Parameter(torch.tensor(0.2), requires_grad=True)
40
+ activation_func = nn.ELU(inplace=True)
41
+
42
+ self.ray_dir_fc = nn.Sequential(nn.Linear(4, 16),
43
+ activation_func,
44
+ nn.Linear(16, in_rendering_feat_ch + 3),
45
+ activation_func)
46
+
47
+ self.base_fc = nn.Sequential(nn.Linear((in_rendering_feat_ch + 3) * 3 + in_geometry_feat_ch, 64),
48
+ activation_func,
49
+ nn.Linear(64, 32),
50
+ activation_func)
51
+
52
+ self.vis_fc = nn.Sequential(nn.Linear(32, 32),
53
+ activation_func,
54
+ nn.Linear(32, 33),
55
+ activation_func,
56
+ )
57
+
58
+ self.vis_fc2 = nn.Sequential(nn.Linear(32, 32),
59
+ activation_func,
60
+ nn.Linear(32, 1),
61
+ nn.Sigmoid()
62
+ )
63
+
64
+ self.rgb_fc = nn.Sequential(nn.Linear(32 + 1 + 4, 16),
65
+ activation_func,
66
+ nn.Linear(16, 8),
67
+ activation_func,
68
+ nn.Linear(8, 1))
69
+
70
+ self.base_fc.apply(weights_init)
71
+ self.vis_fc2.apply(weights_init)
72
+ self.vis_fc.apply(weights_init)
73
+ self.rgb_fc.apply(weights_init)
74
+
75
+ def forward(self, geometry_feat, rgb_feat, ray_diff, mask):
76
+ '''
77
+ :param geometry_feat: geometry features indicates sdf [n_rays, n_samples, n_feat]
78
+ :param rgb_feat: rgbs and image features [n_views, n_rays, n_samples, n_feat]
79
+ :param ray_diff: ray direction difference [n_views, n_rays, n_samples, 4], first 3 channels are directions,
80
+ last channel is inner product
81
+ :param mask: mask for whether each projection is valid or not. [n_views, n_rays, n_samples]
82
+ :return: rgb and density output, [n_rays, n_samples, 4]
83
+ '''
84
+
85
+ rgb_feat = rgb_feat.permute(1, 2, 0, 3).contiguous()
86
+ ray_diff = ray_diff.permute(1, 2, 0, 3).contiguous()
87
+ mask = mask[:, :, :, None].permute(1, 2, 0, 3).contiguous()
88
+ num_views = rgb_feat.shape[2]
89
+ geometry_feat = geometry_feat[:, :, None, :].repeat(1, 1, num_views, 1)
90
+
91
+ direction_feat = self.ray_dir_fc(ray_diff)
92
+ rgb_in = rgb_feat[..., :3]
93
+ rgb_feat = rgb_feat + direction_feat
94
+
95
+ if self.anti_alias_pooling:
96
+ _, dot_prod = torch.split(ray_diff, [3, 1], dim=-1)
97
+ exp_dot_prod = torch.exp(torch.abs(self.s) * (dot_prod - 1))
98
+ weight = (exp_dot_prod - torch.min(exp_dot_prod, dim=2, keepdim=True)[0]) * mask
99
+ weight = weight / (torch.sum(weight, dim=2, keepdim=True) + 1e-8)
100
+ else:
101
+ weight = mask / (torch.sum(mask, dim=2, keepdim=True) + 1e-8)
102
+
103
+ # compute mean and variance across different views for each point
104
+ mean, var = fused_mean_variance(rgb_feat, weight) # [n_rays, n_samples, 1, n_feat]
105
+ globalfeat = torch.cat([mean, var], dim=-1) # [n_rays, n_samples, 1, 2*n_feat]
106
+
107
+ x = torch.cat([geometry_feat, globalfeat.expand(-1, -1, num_views, -1), rgb_feat],
108
+ dim=-1) # [n_rays, n_samples, n_views, 3*n_feat+n_geo_feat]
109
+ x = self.base_fc(x)
110
+
111
+ x_vis = self.vis_fc(x * weight)
112
+ x_res, vis = torch.split(x_vis, [x_vis.shape[-1] - 1, 1], dim=-1)
113
+ vis = F.sigmoid(vis) * mask
114
+ x = x + x_res
115
+ vis = self.vis_fc2(x * vis) * mask
116
+
117
+ # rgb computation
118
+ x = torch.cat([x, vis, ray_diff], dim=-1)
119
+ x = self.rgb_fc(x)
120
+ x = x.masked_fill(mask == 0, -1e9)
121
+ blending_weights_valid = F.softmax(x, dim=2) # color blending
122
+ rgb_out = torch.sum(rgb_in * blending_weights_valid, dim=2)
123
+
124
+ mask = mask.detach().to(rgb_out.dtype) # [n_rays, n_samples, n_views, 1]
125
+ mask = torch.sum(mask, dim=2, keepdim=False)
126
+ mask = mask >= 2 # more than 2 views see the point
127
+ mask = torch.sum(mask.to(rgb_out.dtype), dim=1, keepdim=False)
128
+ valid_mask = mask > 8 # valid rays, more than 8 valid samples
129
+ return rgb_out, valid_mask # (N_rays, n_samples, 3), (N_rays, 1)
SparseNeuS_demo_v1/models/sparse_neus_renderer.py ADDED
@@ -0,0 +1,985 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ The codes are heavily borrowed from NeuS
3
+ """
4
+
5
+ import os
6
+ import cv2 as cv
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ import numpy as np
11
+ import logging
12
+ import mcubes
13
+ from icecream import ic
14
+ from models.render_utils import sample_pdf
15
+
16
+ from models.projector import Projector
17
+ from tsparse.torchsparse_utils import sparse_to_dense_channel
18
+
19
+ from models.fast_renderer import FastRenderer
20
+
21
+ from models.patch_projector import PatchProjector
22
+
23
+
24
+ class SparseNeuSRenderer(nn.Module):
25
+ """
26
+ conditional neus render;
27
+ optimize on normalized world space;
28
+ warped by nn.Module to support DataParallel traning
29
+ """
30
+
31
+ def __init__(self,
32
+ rendering_network_outside,
33
+ sdf_network,
34
+ variance_network,
35
+ rendering_network,
36
+ n_samples,
37
+ n_importance,
38
+ n_outside,
39
+ perturb,
40
+ alpha_type='div',
41
+ conf=None
42
+ ):
43
+ super(SparseNeuSRenderer, self).__init__()
44
+
45
+ self.conf = conf
46
+ self.base_exp_dir = conf['general.base_exp_dir']
47
+
48
+ # network setups
49
+ self.rendering_network_outside = rendering_network_outside
50
+ self.sdf_network = sdf_network
51
+ self.variance_network = variance_network
52
+ self.rendering_network = rendering_network
53
+
54
+ self.n_samples = n_samples
55
+ self.n_importance = n_importance
56
+ self.n_outside = n_outside
57
+ self.perturb = perturb
58
+ self.alpha_type = alpha_type
59
+
60
+ self.rendering_projector = Projector() # used to obtain features for generalized rendering
61
+
62
+ self.h_patch_size = self.conf.get_int('model.h_patch_size', default=3)
63
+ self.patch_projector = PatchProjector(self.h_patch_size)
64
+
65
+ self.ray_tracer = FastRenderer() # ray_tracer to extract depth maps from sdf_volume
66
+
67
+ # - fitted rendering or general rendering
68
+ try:
69
+ self.if_fitted_rendering = self.sdf_network.if_fitted_rendering
70
+ except:
71
+ self.if_fitted_rendering = False
72
+
73
+ def up_sample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_variance,
74
+ conditional_valid_mask_volume=None):
75
+ device = rays_o.device
76
+ batch_size, n_samples = z_vals.shape
77
+ pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] # n_rays, n_samples, 3
78
+
79
+ if conditional_valid_mask_volume is not None:
80
+ pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), conditional_valid_mask_volume)
81
+ pts_mask = pts_mask.reshape(batch_size, n_samples)
82
+ pts_mask = pts_mask[:, :-1] * pts_mask[:, 1:] # [batch_size, n_samples-1]
83
+ else:
84
+ pts_mask = torch.ones([batch_size, n_samples]).to(pts.device)
85
+
86
+ sdf = sdf.reshape(batch_size, n_samples)
87
+ prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:]
88
+ prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:]
89
+ mid_sdf = (prev_sdf + next_sdf) * 0.5
90
+ dot_val = None
91
+ if self.alpha_type == 'uniform':
92
+ dot_val = torch.ones([batch_size, n_samples - 1]) * -1.0
93
+ else:
94
+ dot_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5)
95
+ prev_dot_val = torch.cat([torch.zeros([batch_size, 1]).to(device), dot_val[:, :-1]], dim=-1)
96
+ dot_val = torch.stack([prev_dot_val, dot_val], dim=-1)
97
+ dot_val, _ = torch.min(dot_val, dim=-1, keepdim=False)
98
+ dot_val = dot_val.clip(-10.0, 0.0) * pts_mask
99
+ dist = (next_z_vals - prev_z_vals)
100
+ prev_esti_sdf = mid_sdf - dot_val * dist * 0.5
101
+ next_esti_sdf = mid_sdf + dot_val * dist * 0.5
102
+ prev_cdf = torch.sigmoid(prev_esti_sdf * inv_variance)
103
+ next_cdf = torch.sigmoid(next_esti_sdf * inv_variance)
104
+ alpha_sdf = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5)
105
+
106
+ alpha = alpha_sdf
107
+
108
+ # - apply pts_mask
109
+ alpha = pts_mask * alpha
110
+
111
+ weights = alpha * torch.cumprod(
112
+ torch.cat([torch.ones([batch_size, 1]).to(device), 1. - alpha + 1e-7], -1), -1)[:, :-1]
113
+
114
+ z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach()
115
+ return z_samples
116
+
117
+ def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, lod,
118
+ sdf_network, gru_fusion,
119
+ # * related to conditional feature
120
+ conditional_volume=None,
121
+ conditional_valid_mask_volume=None
122
+ ):
123
+ device = rays_o.device
124
+ batch_size, n_samples = z_vals.shape
125
+ _, n_importance = new_z_vals.shape
126
+ pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None]
127
+
128
+ if conditional_valid_mask_volume is not None:
129
+ pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), conditional_valid_mask_volume)
130
+ pts_mask = pts_mask.reshape(batch_size, n_importance)
131
+ pts_mask_bool = (pts_mask > 0).view(-1)
132
+ else:
133
+ pts_mask = torch.ones([batch_size, n_importance]).to(pts.device)
134
+
135
+ new_sdf = torch.ones([batch_size * n_importance, 1]).to(pts.dtype).to(device) * 100
136
+
137
+ if torch.sum(pts_mask) > 1:
138
+ new_outputs = sdf_network.sdf(pts.reshape(-1, 3)[pts_mask_bool], conditional_volume, lod=lod)
139
+ new_sdf[pts_mask_bool] = new_outputs['sdf_pts_scale%d' % lod] # .reshape(batch_size, n_importance)
140
+
141
+ new_sdf = new_sdf.view(batch_size, n_importance)
142
+
143
+ z_vals = torch.cat([z_vals, new_z_vals], dim=-1)
144
+ sdf = torch.cat([sdf, new_sdf], dim=-1)
145
+
146
+ z_vals, index = torch.sort(z_vals, dim=-1)
147
+ xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1)
148
+ index = index.reshape(-1)
149
+ sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance)
150
+
151
+ return z_vals, sdf
152
+
153
+ @torch.no_grad()
154
+ def get_pts_mask_for_conditional_volume(self, pts, mask_volume):
155
+ """
156
+
157
+ :param pts: [N, 3]
158
+ :param mask_volume: [1, 1, X, Y, Z]
159
+ :return:
160
+ """
161
+ num_pts = pts.shape[0]
162
+ pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1)
163
+
164
+ pts = torch.flip(pts, dims=[-1])
165
+
166
+ pts_mask = F.grid_sample(mask_volume, pts, mode='nearest') # [1, c, 1, 1, num_pts]
167
+ pts_mask = pts_mask.view(-1, num_pts).permute(1, 0).contiguous() # [num_pts, 1]
168
+
169
+ return pts_mask
170
+
171
+ def render_core(self,
172
+ rays_o,
173
+ rays_d,
174
+ z_vals,
175
+ sample_dist,
176
+ lod,
177
+ sdf_network,
178
+ rendering_network,
179
+ background_alpha=None, # - no use here
180
+ background_sampled_color=None, # - no use here
181
+ background_rgb=None, # - no use here
182
+ alpha_inter_ratio=0.0,
183
+ # * related to conditional feature
184
+ conditional_volume=None,
185
+ conditional_valid_mask_volume=None,
186
+ # * 2d feature maps
187
+ feature_maps=None,
188
+ color_maps=None,
189
+ w2cs=None,
190
+ intrinsics=None,
191
+ img_wh=None,
192
+ query_c2w=None, # - used for testing
193
+ if_general_rendering=True,
194
+ if_render_with_grad=True,
195
+ # * used for blending mlp rendering network
196
+ img_index=None,
197
+ rays_uv=None,
198
+ # * used for clear bg and fg
199
+ bg_num=0
200
+ ):
201
+ device = rays_o.device
202
+ N_rays = rays_o.shape[0]
203
+ _, n_samples = z_vals.shape
204
+ dists = z_vals[..., 1:] - z_vals[..., :-1]
205
+ dists = torch.cat([dists, torch.Tensor([sample_dist]).expand(dists[..., :1].shape).to(device)], -1)
206
+
207
+ mid_z_vals = z_vals + dists * 0.5
208
+ mid_dists = mid_z_vals[..., 1:] - mid_z_vals[..., :-1]
209
+
210
+ pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None] # n_rays, n_samples, 3
211
+ dirs = rays_d[:, None, :].expand(pts.shape)
212
+
213
+ pts = pts.reshape(-1, 3)
214
+ dirs = dirs.reshape(-1, 3)
215
+
216
+ # * if conditional_volume is restored from sparse volume, need mask for pts
217
+ if conditional_valid_mask_volume is not None:
218
+ pts_mask = self.get_pts_mask_for_conditional_volume(pts, conditional_valid_mask_volume)
219
+ pts_mask = pts_mask.reshape(N_rays, n_samples).float().detach()
220
+ pts_mask_bool = (pts_mask > 0).view(-1)
221
+
222
+ if torch.sum(pts_mask_bool.float()) < 1: # ! when render out image, may meet this problem
223
+ pts_mask_bool[:100] = True
224
+
225
+ else:
226
+ pts_mask = torch.ones([N_rays, n_samples]).to(pts.device)
227
+ # import ipdb; ipdb.set_trace()
228
+ # pts_valid = pts[pts_mask_bool]
229
+ sdf_nn_output = sdf_network.sdf(pts[pts_mask_bool], conditional_volume, lod=lod)
230
+
231
+ sdf = torch.ones([N_rays * n_samples, 1]).to(pts.dtype).to(device) * 100
232
+ sdf[pts_mask_bool] = sdf_nn_output['sdf_pts_scale%d' % lod] # [N_rays*n_samples, 1]
233
+ feature_vector_valid = sdf_nn_output['sdf_features_pts_scale%d' % lod]
234
+ feature_vector = torch.zeros([N_rays * n_samples, feature_vector_valid.shape[1]]).to(pts.dtype).to(device)
235
+ feature_vector[pts_mask_bool] = feature_vector_valid
236
+
237
+ # * estimate alpha from sdf
238
+ gradients = torch.zeros([N_rays * n_samples, 3]).to(pts.dtype).to(device)
239
+ # import ipdb; ipdb.set_trace()
240
+ gradients[pts_mask_bool] = sdf_network.gradient(
241
+ pts[pts_mask_bool], conditional_volume, lod=lod).squeeze()
242
+
243
+ sampled_color_mlp = None
244
+ rendering_valid_mask_mlp = None
245
+ sampled_color_patch = None
246
+ rendering_patch_mask = None
247
+
248
+ if self.if_fitted_rendering: # used for fine-tuning
249
+ position_latent = sdf_nn_output['sampled_latent_scale%d' % lod]
250
+ sampled_color_mlp = torch.zeros([N_rays * n_samples, 3]).to(pts.dtype).to(device)
251
+ sampled_color_mlp_mask = torch.zeros([N_rays * n_samples, 1]).to(pts.dtype).to(device)
252
+
253
+ # - extract pixel
254
+ pts_pixel_color, pts_pixel_mask = self.patch_projector.pixel_warp(
255
+ pts[pts_mask_bool][:, None, :], color_maps, intrinsics,
256
+ w2cs, img_wh=None) # [N_rays * n_samples,1, N_views, 3] , [N_rays*n_samples, 1, N_views]
257
+ pts_pixel_color = pts_pixel_color[:, 0, :, :] # [N_rays * n_samples, N_views, 3]
258
+ pts_pixel_mask = pts_pixel_mask[:, 0, :] # [N_rays*n_samples, N_views]
259
+
260
+ # - extract patch
261
+ if_patch_blending = False if rays_uv is None else True
262
+ pts_patch_color, pts_patch_mask = None, None
263
+ if if_patch_blending:
264
+ pts_patch_color, pts_patch_mask = self.patch_projector.patch_warp(
265
+ pts.reshape([N_rays, n_samples, 3]),
266
+ rays_uv, gradients.reshape([N_rays, n_samples, 3]),
267
+ color_maps,
268
+ intrinsics[0], intrinsics,
269
+ query_c2w[0], torch.inverse(w2cs), img_wh=None
270
+ ) # (N_rays, n_samples, N_src, Npx, 3), (N_rays, n_samples, N_src, Npx)
271
+ N_src, Npx = pts_patch_mask.shape[2:]
272
+ pts_patch_color = pts_patch_color.view(N_rays * n_samples, N_src, Npx, 3)[pts_mask_bool]
273
+ pts_patch_mask = pts_patch_mask.view(N_rays * n_samples, N_src, Npx)[pts_mask_bool]
274
+
275
+ sampled_color_patch = torch.zeros([N_rays * n_samples, Npx, 3]).to(device)
276
+ sampled_color_patch_mask = torch.zeros([N_rays * n_samples, 1]).to(device)
277
+
278
+ sampled_color_mlp_, sampled_color_mlp_mask_, \
279
+ sampled_color_patch_, sampled_color_patch_mask_ = sdf_network.color_blend(
280
+ pts[pts_mask_bool],
281
+ position_latent,
282
+ gradients[pts_mask_bool],
283
+ dirs[pts_mask_bool],
284
+ feature_vector[pts_mask_bool],
285
+ img_index=img_index,
286
+ pts_pixel_color=pts_pixel_color,
287
+ pts_pixel_mask=pts_pixel_mask,
288
+ pts_patch_color=pts_patch_color,
289
+ pts_patch_mask=pts_patch_mask
290
+
291
+ ) # [n, 3], [n, 1]
292
+ sampled_color_mlp[pts_mask_bool] = sampled_color_mlp_
293
+ sampled_color_mlp_mask[pts_mask_bool] = sampled_color_mlp_mask_.float()
294
+ sampled_color_mlp = sampled_color_mlp.view(N_rays, n_samples, 3)
295
+ sampled_color_mlp_mask = sampled_color_mlp_mask.view(N_rays, n_samples)
296
+ rendering_valid_mask_mlp = torch.mean(pts_mask * sampled_color_mlp_mask, dim=-1, keepdim=True) > 0.5
297
+
298
+ # patch blending
299
+ if if_patch_blending:
300
+ sampled_color_patch[pts_mask_bool] = sampled_color_patch_
301
+ sampled_color_patch_mask[pts_mask_bool] = sampled_color_patch_mask_.float()
302
+ sampled_color_patch = sampled_color_patch.view(N_rays, n_samples, Npx, 3)
303
+ sampled_color_patch_mask = sampled_color_patch_mask.view(N_rays, n_samples)
304
+ rendering_patch_mask = torch.mean(pts_mask * sampled_color_patch_mask, dim=-1,
305
+ keepdim=True) > 0.5 # [N_rays, 1]
306
+ else:
307
+ sampled_color_patch, rendering_patch_mask = None, None
308
+
309
+ if if_general_rendering: # used for general training
310
+ # [512, 128, 16]; [4, 512, 128, 59]; [4, 512, 128, 4]
311
+ ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask, _, _ = self.rendering_projector.compute(
312
+ pts.view(N_rays, n_samples, 3),
313
+ # * 3d geometry feature volumes
314
+ geometryVolume=conditional_volume[0],
315
+ geometryVolumeMask=conditional_valid_mask_volume[0],
316
+ # * 2d rendering feature maps
317
+ rendering_feature_maps=feature_maps, # [n_views, 56, 256, 256]
318
+ color_maps=color_maps,
319
+ w2cs=w2cs,
320
+ intrinsics=intrinsics,
321
+ img_wh=img_wh,
322
+ query_img_idx=0, # the index of the N_views dim for rendering
323
+ query_c2w=query_c2w,
324
+ )
325
+
326
+ # (N_rays, n_samples, 3)
327
+ if if_render_with_grad:
328
+ # import ipdb; ipdb.set_trace()
329
+ # [nrays, 3] [nrays, 1]
330
+ sampled_color, rendering_valid_mask = rendering_network(
331
+ ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask)
332
+ # import ipdb; ipdb.set_trace()
333
+ else:
334
+ with torch.no_grad():
335
+ sampled_color, rendering_valid_mask = rendering_network(
336
+ ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask)
337
+ else:
338
+ sampled_color, rendering_valid_mask = None, None
339
+
340
+ inv_variance = self.variance_network(feature_vector)[:, :1].clip(1e-6, 1e6)
341
+
342
+ true_dot_val = (dirs * gradients).sum(-1, keepdim=True) # * calculate
343
+
344
+ iter_cos = -(F.relu(-true_dot_val * 0.5 + 0.5) * (1.0 - alpha_inter_ratio) + F.relu(
345
+ -true_dot_val) * alpha_inter_ratio) # always non-positive
346
+
347
+ iter_cos = iter_cos * pts_mask.view(-1, 1)
348
+
349
+ true_estimate_sdf_half_next = sdf + iter_cos.clip(-10.0, 10.0) * dists.reshape(-1, 1) * 0.5
350
+ true_estimate_sdf_half_prev = sdf - iter_cos.clip(-10.0, 10.0) * dists.reshape(-1, 1) * 0.5
351
+
352
+ prev_cdf = torch.sigmoid(true_estimate_sdf_half_prev * inv_variance)
353
+ next_cdf = torch.sigmoid(true_estimate_sdf_half_next * inv_variance)
354
+
355
+ p = prev_cdf - next_cdf
356
+ c = prev_cdf
357
+
358
+ if self.alpha_type == 'div':
359
+ alpha_sdf = ((p + 1e-5) / (c + 1e-5)).reshape(N_rays, n_samples).clip(0.0, 1.0)
360
+ elif self.alpha_type == 'uniform':
361
+ uniform_estimate_sdf_half_next = sdf - dists.reshape(-1, 1) * 0.5
362
+ uniform_estimate_sdf_half_prev = sdf + dists.reshape(-1, 1) * 0.5
363
+ uniform_prev_cdf = torch.sigmoid(uniform_estimate_sdf_half_prev * inv_variance)
364
+ uniform_next_cdf = torch.sigmoid(uniform_estimate_sdf_half_next * inv_variance)
365
+ uniform_alpha = F.relu(
366
+ (uniform_prev_cdf - uniform_next_cdf + 1e-5) / (uniform_prev_cdf + 1e-5)).reshape(
367
+ N_rays, n_samples).clip(0.0, 1.0)
368
+ alpha_sdf = uniform_alpha
369
+ else:
370
+ assert False
371
+
372
+ alpha = alpha_sdf
373
+
374
+ # - apply pts_mask
375
+ alpha = alpha * pts_mask
376
+
377
+ # pts_radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=True).reshape(N_rays, n_samples)
378
+ # inside_sphere = (pts_radius < 1.0).float().detach()
379
+ # relax_inside_sphere = (pts_radius < 1.2).float().detach()
380
+ inside_sphere = pts_mask
381
+ relax_inside_sphere = pts_mask
382
+
383
+ weights = alpha * torch.cumprod(torch.cat([torch.ones([N_rays, 1]).to(device), 1. - alpha + 1e-7], -1), -1)[:,
384
+ :-1] # n_rays, n_samples
385
+ weights_sum = weights.sum(dim=-1, keepdim=True)
386
+ alpha_sum = alpha.sum(dim=-1, keepdim=True)
387
+
388
+ if bg_num > 0:
389
+ weights_sum_fg = weights[:, :-bg_num].sum(dim=-1, keepdim=True)
390
+ else:
391
+ weights_sum_fg = weights_sum
392
+
393
+ if sampled_color is not None:
394
+ color = (sampled_color * weights[:, :, None]).sum(dim=1)
395
+ else:
396
+ color = None
397
+ # import ipdb; ipdb.set_trace()
398
+
399
+ if background_rgb is not None and color is not None:
400
+ color = color + background_rgb * (1.0 - weights_sum)
401
+ # print("color device:" + str(color.device))
402
+ # if color is not None:
403
+ # # import ipdb; ipdb.set_trace()
404
+ # color = color + (1.0 - weights_sum)
405
+
406
+
407
+ ###################* mlp color rendering #####################
408
+ color_mlp = None
409
+ # import ipdb; ipdb.set_trace()
410
+ if sampled_color_mlp is not None:
411
+ color_mlp = (sampled_color_mlp * weights[:, :, None]).sum(dim=1)
412
+
413
+ if background_rgb is not None and color_mlp is not None:
414
+ color_mlp = color_mlp + background_rgb * (1.0 - weights_sum)
415
+
416
+ ############################ * patch blending ################
417
+ blended_color_patch = None
418
+ if sampled_color_patch is not None:
419
+ blended_color_patch = (sampled_color_patch * weights[:, :, None, None]).sum(dim=1) # [N_rays, Npx, 3]
420
+
421
+ ######################################################
422
+
423
+ gradient_error = (torch.linalg.norm(gradients.reshape(N_rays, n_samples, 3), ord=2,
424
+ dim=-1) - 1.0) ** 2
425
+ # ! the gradient normal should be masked out, the pts out of the bounding box should also be penalized
426
+ gradient_error = (pts_mask * gradient_error).sum() / (
427
+ (pts_mask).sum() + 1e-5)
428
+
429
+ depth = (mid_z_vals * weights[:, :n_samples]).sum(dim=1, keepdim=True)
430
+ # print("[TEST]: weights_sum in render_core", weights_sum.mean())
431
+ # print("[TEST]: weights_sum in render_core NAN number", weights_sum.isnan().sum())
432
+ # if weights_sum.isnan().sum() > 0:
433
+ # import ipdb; ipdb.set_trace()
434
+ return {
435
+ 'color': color,
436
+ 'color_mask': rendering_valid_mask, # (N_rays, 1)
437
+ 'color_mlp': color_mlp,
438
+ 'color_mlp_mask': rendering_valid_mask_mlp,
439
+ 'sdf': sdf, # (N_rays, n_samples)
440
+ 'depth': depth, # (N_rays, 1)
441
+ 'dists': dists,
442
+ 'gradients': gradients.reshape(N_rays, n_samples, 3),
443
+ 'variance': 1.0 / inv_variance,
444
+ 'mid_z_vals': mid_z_vals,
445
+ 'weights': weights,
446
+ 'weights_sum': weights_sum,
447
+ 'alpha_sum': alpha_sum,
448
+ 'alpha_mean': alpha.mean(),
449
+ 'cdf': c.reshape(N_rays, n_samples),
450
+ 'gradient_error': gradient_error,
451
+ 'inside_sphere': inside_sphere,
452
+ 'blended_color_patch': blended_color_patch,
453
+ 'blended_color_patch_mask': rendering_patch_mask,
454
+ 'weights_sum_fg': weights_sum_fg
455
+ }
456
+
457
+ def render(self, rays_o, rays_d, near, far, sdf_network, rendering_network,
458
+ perturb_overwrite=-1,
459
+ background_rgb=None,
460
+ alpha_inter_ratio=0.0,
461
+ # * related to conditional feature
462
+ lod=None,
463
+ conditional_volume=None,
464
+ conditional_valid_mask_volume=None,
465
+ # * 2d feature maps
466
+ feature_maps=None,
467
+ color_maps=None,
468
+ w2cs=None,
469
+ intrinsics=None,
470
+ img_wh=None,
471
+ query_c2w=None, # -used for testing
472
+ if_general_rendering=True,
473
+ if_render_with_grad=True,
474
+ # * used for blending mlp rendering network
475
+ img_index=None,
476
+ rays_uv=None,
477
+ # * importance sample for second lod network
478
+ pre_sample=False, # no use here
479
+ # * for clear foreground
480
+ bg_ratio=0.0
481
+ ):
482
+ device = rays_o.device
483
+ N_rays = len(rays_o)
484
+ # sample_dist = 2.0 / self.n_samples
485
+ sample_dist = ((far - near) / self.n_samples).mean().item()
486
+ z_vals = torch.linspace(0.0, 1.0, self.n_samples).to(device)
487
+ z_vals = near + (far - near) * z_vals[None, :]
488
+
489
+ bg_num = int(self.n_samples * bg_ratio)
490
+
491
+ if z_vals.shape[0] == 1:
492
+ z_vals = z_vals.repeat(N_rays, 1)
493
+
494
+ if bg_num > 0:
495
+ z_vals_bg = z_vals[:, self.n_samples - bg_num:]
496
+ z_vals = z_vals[:, :self.n_samples - bg_num]
497
+
498
+ n_samples = self.n_samples - bg_num
499
+ perturb = self.perturb
500
+
501
+ # - significantly speed up training, for the second lod network
502
+ if pre_sample:
503
+ z_vals = self.sample_z_vals_from_maskVolume(rays_o, rays_d, near, far,
504
+ conditional_valid_mask_volume)
505
+
506
+ if perturb_overwrite >= 0:
507
+ perturb = perturb_overwrite
508
+ if perturb > 0:
509
+ # get intervals between samples
510
+ mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
511
+ upper = torch.cat([mids, z_vals[..., -1:]], -1)
512
+ lower = torch.cat([z_vals[..., :1], mids], -1)
513
+ # stratified samples in those intervals
514
+ t_rand = torch.rand(z_vals.shape).to(device)
515
+ z_vals = lower + (upper - lower) * t_rand
516
+
517
+ background_alpha = None
518
+ background_sampled_color = None
519
+ z_val_before = z_vals.clone()
520
+ # Up sample
521
+ if self.n_importance > 0:
522
+ with torch.no_grad():
523
+ pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
524
+
525
+ sdf_outputs = sdf_network.sdf(
526
+ pts.reshape(-1, 3), conditional_volume, lod=lod)
527
+ # pdb.set_trace()
528
+ sdf = sdf_outputs['sdf_pts_scale%d' % lod].reshape(N_rays, self.n_samples - bg_num)
529
+
530
+ n_steps = 4
531
+ for i in range(n_steps):
532
+ new_z_vals = self.up_sample(rays_o, rays_d, z_vals, sdf, self.n_importance // n_steps,
533
+ 64 * 2 ** i,
534
+ conditional_valid_mask_volume=conditional_valid_mask_volume,
535
+ )
536
+
537
+ # if new_z_vals.isnan().sum() > 0:
538
+ # import ipdb; ipdb.set_trace()
539
+
540
+ z_vals, sdf = self.cat_z_vals(
541
+ rays_o, rays_d, z_vals, new_z_vals, sdf, lod,
542
+ sdf_network, gru_fusion=False,
543
+ conditional_volume=conditional_volume,
544
+ conditional_valid_mask_volume=conditional_valid_mask_volume,
545
+ )
546
+
547
+ del sdf
548
+
549
+ n_samples = self.n_samples + self.n_importance
550
+
551
+ # Background
552
+ ret_outside = None
553
+
554
+ # Render
555
+ if bg_num > 0:
556
+ z_vals = torch.cat([z_vals, z_vals_bg], dim=1)
557
+ # if z_vals.isnan().sum() > 0:
558
+ # import ipdb; ipdb.set_trace()
559
+ ret_fine = self.render_core(rays_o,
560
+ rays_d,
561
+ z_vals,
562
+ sample_dist,
563
+ lod,
564
+ sdf_network,
565
+ rendering_network,
566
+ background_rgb=background_rgb,
567
+ background_alpha=background_alpha,
568
+ background_sampled_color=background_sampled_color,
569
+ alpha_inter_ratio=alpha_inter_ratio,
570
+ # * related to conditional feature
571
+ conditional_volume=conditional_volume,
572
+ conditional_valid_mask_volume=conditional_valid_mask_volume,
573
+ # * 2d feature maps
574
+ feature_maps=feature_maps,
575
+ color_maps=color_maps,
576
+ w2cs=w2cs,
577
+ intrinsics=intrinsics,
578
+ img_wh=img_wh,
579
+ query_c2w=query_c2w,
580
+ if_general_rendering=if_general_rendering,
581
+ if_render_with_grad=if_render_with_grad,
582
+ # * used for blending mlp rendering network
583
+ img_index=img_index,
584
+ rays_uv=rays_uv
585
+ )
586
+
587
+ color_fine = ret_fine['color']
588
+
589
+ if self.n_outside > 0:
590
+ color_fine_mask = torch.logical_or(ret_fine['color_mask'], ret_outside['color_mask'])
591
+ else:
592
+ color_fine_mask = ret_fine['color_mask']
593
+
594
+ weights = ret_fine['weights']
595
+ weights_sum = ret_fine['weights_sum']
596
+
597
+ gradients = ret_fine['gradients']
598
+ mid_z_vals = ret_fine['mid_z_vals']
599
+
600
+ # depth = (mid_z_vals * weights[:, :n_samples]).sum(dim=1, keepdim=True)
601
+ depth = ret_fine['depth']
602
+ depth_varaince = ((mid_z_vals - depth) ** 2 * weights[:, :n_samples]).sum(dim=-1, keepdim=True)
603
+ variance = ret_fine['variance'].reshape(N_rays, n_samples).mean(dim=-1, keepdim=True)
604
+
605
+ # - randomly sample points from the volume, and maximize the sdf
606
+ pts_random = torch.rand([1024, 3]).float().to(device) * 2 - 1 # normalized to (-1, 1)
607
+ sdf_random = sdf_network.sdf(pts_random, conditional_volume, lod=lod)['sdf_pts_scale%d' % lod]
608
+
609
+ result = {
610
+ 'depth': depth,
611
+ 'color_fine': color_fine,
612
+ 'color_fine_mask': color_fine_mask,
613
+ 'color_outside': ret_outside['color'] if ret_outside is not None else None,
614
+ 'color_outside_mask': ret_outside['color_mask'] if ret_outside is not None else None,
615
+ 'color_mlp': ret_fine['color_mlp'],
616
+ 'color_mlp_mask': ret_fine['color_mlp_mask'],
617
+ 'variance': variance.mean(),
618
+ 'cdf_fine': ret_fine['cdf'],
619
+ 'depth_variance': depth_varaince,
620
+ 'weights_sum': weights_sum,
621
+ 'weights_max': torch.max(weights, dim=-1, keepdim=True)[0],
622
+ 'alpha_sum': ret_fine['alpha_sum'].mean(),
623
+ 'alpha_mean': ret_fine['alpha_mean'],
624
+ 'gradients': gradients,
625
+ 'weights': weights,
626
+ 'gradient_error_fine': ret_fine['gradient_error'],
627
+ 'inside_sphere': ret_fine['inside_sphere'],
628
+ 'sdf': ret_fine['sdf'],
629
+ 'sdf_random': sdf_random,
630
+ 'blended_color_patch': ret_fine['blended_color_patch'],
631
+ 'blended_color_patch_mask': ret_fine['blended_color_patch_mask'],
632
+ 'weights_sum_fg': ret_fine['weights_sum_fg']
633
+ }
634
+
635
+ return result
636
+
637
+ @torch.no_grad()
638
+ def sample_z_vals_from_sdfVolume(self, rays_o, rays_d, near, far, sdf_volume, mask_volume):
639
+ # ? based on sdf to do importance sampling, seems that too biased on pre-estimation
640
+ device = rays_o.device
641
+ N_rays = len(rays_o)
642
+ n_samples = self.n_samples * 2
643
+
644
+ z_vals = torch.linspace(0.0, 1.0, n_samples).to(device)
645
+ z_vals = near + (far - near) * z_vals[None, :]
646
+
647
+ if z_vals.shape[0] == 1:
648
+ z_vals = z_vals.repeat(N_rays, 1)
649
+
650
+ pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
651
+
652
+ sdf = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), sdf_volume).reshape([N_rays, n_samples])
653
+
654
+ new_z_vals = self.up_sample(rays_o, rays_d, z_vals, sdf, self.n_samples,
655
+ 200,
656
+ conditional_valid_mask_volume=mask_volume,
657
+ )
658
+ return new_z_vals
659
+
660
+ @torch.no_grad()
661
+ def sample_z_vals_from_maskVolume(self, rays_o, rays_d, near, far, mask_volume): # don't use
662
+ device = rays_o.device
663
+ N_rays = len(rays_o)
664
+ n_samples = self.n_samples * 2
665
+
666
+ z_vals = torch.linspace(0.0, 1.0, n_samples).to(device)
667
+ z_vals = near + (far - near) * z_vals[None, :]
668
+
669
+ if z_vals.shape[0] == 1:
670
+ z_vals = z_vals.repeat(N_rays, 1)
671
+
672
+ mid_z_vals = (z_vals[:, 1:] + z_vals[:, :-1]) * 0.5
673
+
674
+ pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None]
675
+
676
+ pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), mask_volume).reshape(
677
+ [N_rays, n_samples - 1])
678
+
679
+ # empty voxel set to 0.1, non-empty voxel set to 1
680
+ weights = torch.where(pts_mask > 0, torch.ones_like(pts_mask).to(device),
681
+ 0.1 * torch.ones_like(pts_mask).to(device))
682
+
683
+ # sample more pts in non-empty voxels
684
+ z_samples = sample_pdf(z_vals, weights, self.n_samples, det=True).detach()
685
+ return z_samples
686
+
687
+ @torch.no_grad()
688
+ def filter_pts_by_depthmaps(self, coords, pred_depth_maps, proj_matrices,
689
+ partial_vol_origin, voxel_size,
690
+ near, far, depth_interval, d_plane_nums):
691
+ """
692
+ Use the pred_depthmaps to remove redundant pts (pruned by sdf, sdf always have two sides, the back side is useless)
693
+ :param coords: [n, 3] int coords
694
+ :param pred_depth_maps: [N_views, 1, h, w]
695
+ :param proj_matrices: [N_views, 4, 4]
696
+ :param partial_vol_origin: [3]
697
+ :param voxel_size: 1
698
+ :param near: 1
699
+ :param far: 1
700
+ :param depth_interval: 1
701
+ :param d_plane_nums: 1
702
+ :return:
703
+ """
704
+ device = pred_depth_maps.device
705
+ n_views, _, sizeH, sizeW = pred_depth_maps.shape
706
+
707
+ if len(partial_vol_origin.shape) == 1:
708
+ partial_vol_origin = partial_vol_origin[None, :]
709
+ pts = coords * voxel_size + partial_vol_origin
710
+
711
+ rs_grid = pts.unsqueeze(0).expand(n_views, -1, -1)
712
+ rs_grid = rs_grid.permute(0, 2, 1).contiguous() # [n_views, 3, n_pts]
713
+ nV = rs_grid.shape[-1]
714
+ rs_grid = torch.cat([rs_grid, torch.ones([n_views, 1, nV]).to(device)], dim=1) # [n_views, 4, n_pts]
715
+
716
+ # Project grid
717
+ im_p = proj_matrices @ rs_grid # - transform world pts to image UV space # [n_views, 4, n_pts]
718
+ im_x, im_y, im_z = im_p[:, 0], im_p[:, 1], im_p[:, 2]
719
+ im_x = im_x / im_z
720
+ im_y = im_y / im_z
721
+
722
+ im_grid = torch.stack([2 * im_x / (sizeW - 1) - 1, 2 * im_y / (sizeH - 1) - 1], dim=-1)
723
+
724
+ im_grid = im_grid.view(n_views, 1, -1, 2)
725
+ sampled_depths = torch.nn.functional.grid_sample(pred_depth_maps, im_grid, mode='bilinear',
726
+ padding_mode='zeros',
727
+ align_corners=True)[:, 0, 0, :] # [n_views, n_pts]
728
+ sampled_depths_valid = (sampled_depths > 0.5 * near).float()
729
+ valid_d_min = (sampled_depths - d_plane_nums * depth_interval).clamp(near.item(),
730
+ far.item()) * sampled_depths_valid
731
+ valid_d_max = (sampled_depths + d_plane_nums * depth_interval).clamp(near.item(),
732
+ far.item()) * sampled_depths_valid
733
+
734
+ mask = im_grid.abs() <= 1
735
+ mask = mask[:, 0] # [n_views, n_pts, 2]
736
+ mask = (mask.sum(dim=-1) == 2) & (im_z > valid_d_min) & (im_z < valid_d_max)
737
+
738
+ mask = mask.view(n_views, -1)
739
+ mask = mask.permute(1, 0).contiguous() # [num_pts, nviews]
740
+
741
+ mask_final = torch.sum(mask.float(), dim=1, keepdim=False) > 0
742
+
743
+ return mask_final
744
+
745
+ @torch.no_grad()
746
+ def get_valid_sparse_coords_by_sdf_depthfilter(self, sdf_volume, coords_volume, mask_volume, feature_volume,
747
+ pred_depth_maps, proj_matrices,
748
+ partial_vol_origin, voxel_size,
749
+ near, far, depth_interval, d_plane_nums,
750
+ threshold=0.02, maximum_pts=110000):
751
+ """
752
+ assume batch size == 1, from the first lod to get sparse voxels
753
+ :param sdf_volume: [1, X, Y, Z]
754
+ :param coords_volume: [3, X, Y, Z]
755
+ :param mask_volume: [1, X, Y, Z]
756
+ :param feature_volume: [C, X, Y, Z]
757
+ :param threshold:
758
+ :return:
759
+ """
760
+ device = coords_volume.device
761
+ _, dX, dY, dZ = coords_volume.shape
762
+
763
+ def prune(sdf_pts, coords_pts, mask_volume, threshold):
764
+ occupancy_mask = (torch.abs(sdf_pts) < threshold).squeeze(1) # [num_pts]
765
+ valid_coords = coords_pts[occupancy_mask]
766
+
767
+ # - filter backside surface by depth maps
768
+ mask_filtered = self.filter_pts_by_depthmaps(valid_coords, pred_depth_maps, proj_matrices,
769
+ partial_vol_origin, voxel_size,
770
+ near, far, depth_interval, d_plane_nums)
771
+ valid_coords = valid_coords[mask_filtered]
772
+
773
+ # - dilate
774
+ occupancy_mask = sparse_to_dense_channel(valid_coords, 1, [dX, dY, dZ], 1, 0, device) # [dX, dY, dZ, 1]
775
+
776
+ # - dilate
777
+ occupancy_mask = occupancy_mask.float()
778
+ occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ)
779
+ occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3)
780
+ occupancy_mask = occupancy_mask.view(-1, 1) > 0
781
+
782
+ final_mask = torch.logical_and(mask_volume, occupancy_mask)[:, 0] # [num_pts]
783
+
784
+ return final_mask, torch.sum(final_mask.float())
785
+
786
+ C, dX, dY, dZ = feature_volume.shape
787
+ sdf_volume = sdf_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
788
+ coords_volume = coords_volume.permute(1, 2, 3, 0).contiguous().view(-1, 3)
789
+ mask_volume = mask_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
790
+ feature_volume = feature_volume.permute(1, 2, 3, 0).contiguous().view(-1, C)
791
+
792
+ # - for check
793
+ # sdf_volume = torch.rand_like(sdf_volume).float().to(sdf_volume.device) * 0.02
794
+
795
+ final_mask, valid_num = prune(sdf_volume, coords_volume, mask_volume, threshold)
796
+
797
+ while (valid_num > maximum_pts) and (threshold > 0.003):
798
+ threshold = threshold - 0.002
799
+ final_mask, valid_num = prune(sdf_volume, coords_volume, mask_volume, threshold)
800
+
801
+ valid_coords = coords_volume[final_mask] # [N, 3]
802
+ valid_feature = feature_volume[final_mask] # [N, C]
803
+
804
+ valid_coords = torch.cat([torch.ones([valid_coords.shape[0], 1]).to(valid_coords.device) * 0,
805
+ valid_coords], dim=1) # [N, 4], append batch idx
806
+
807
+ # ! if the valid_num is still larger than maximum_pts, sample part of pts
808
+ if valid_num > maximum_pts:
809
+ valid_num = valid_num.long()
810
+ occupancy = torch.ones([valid_num]).to(device) > 0
811
+ choice = np.random.choice(valid_num.cpu().numpy(), valid_num.cpu().numpy() - maximum_pts,
812
+ replace=False)
813
+ ind = torch.nonzero(occupancy).to(device)
814
+ occupancy[ind[choice]] = False
815
+ valid_coords = valid_coords[occupancy]
816
+ valid_feature = valid_feature[occupancy]
817
+
818
+ print(threshold, "randomly sample to save memory")
819
+
820
+ return valid_coords, valid_feature
821
+
822
+ @torch.no_grad()
823
+ def get_valid_sparse_coords_by_sdf(self, sdf_volume, coords_volume, mask_volume, feature_volume, threshold=0.02,
824
+ maximum_pts=110000):
825
+ """
826
+ assume batch size == 1, from the first lod to get sparse voxels
827
+ :param sdf_volume: [num_pts, 1]
828
+ :param coords_volume: [3, X, Y, Z]
829
+ :param mask_volume: [1, X, Y, Z]
830
+ :param feature_volume: [C, X, Y, Z]
831
+ :param threshold:
832
+ :return:
833
+ """
834
+
835
+ def prune(sdf_volume, mask_volume, threshold):
836
+ occupancy_mask = torch.abs(sdf_volume) < threshold # [num_pts, 1]
837
+
838
+ # - dilate
839
+ occupancy_mask = occupancy_mask.float()
840
+ occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ)
841
+ occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3)
842
+ occupancy_mask = occupancy_mask.view(-1, 1) > 0
843
+
844
+ final_mask = torch.logical_and(mask_volume, occupancy_mask)[:, 0] # [num_pts]
845
+
846
+ return final_mask, torch.sum(final_mask.float())
847
+
848
+ C, dX, dY, dZ = feature_volume.shape
849
+ coords_volume = coords_volume.permute(1, 2, 3, 0).contiguous().view(-1, 3)
850
+ mask_volume = mask_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
851
+ feature_volume = feature_volume.permute(1, 2, 3, 0).contiguous().view(-1, C)
852
+
853
+ final_mask, valid_num = prune(sdf_volume, mask_volume, threshold)
854
+
855
+ while (valid_num > maximum_pts) and (threshold > 0.003):
856
+ threshold = threshold - 0.002
857
+ final_mask, valid_num = prune(sdf_volume, mask_volume, threshold)
858
+
859
+ valid_coords = coords_volume[final_mask] # [N, 3]
860
+ valid_feature = feature_volume[final_mask] # [N, C]
861
+
862
+ valid_coords = torch.cat([torch.ones([valid_coords.shape[0], 1]).to(valid_coords.device) * 0,
863
+ valid_coords], dim=1) # [N, 4], append batch idx
864
+
865
+ # ! if the valid_num is still larger than maximum_pts, sample part of pts
866
+ if valid_num > maximum_pts:
867
+ device = sdf_volume.device
868
+ valid_num = valid_num.long()
869
+ occupancy = torch.ones([valid_num]).to(device) > 0
870
+ choice = np.random.choice(valid_num.cpu().numpy(), valid_num.cpu().numpy() - maximum_pts,
871
+ replace=False)
872
+ ind = torch.nonzero(occupancy).to(device)
873
+ occupancy[ind[choice]] = False
874
+ valid_coords = valid_coords[occupancy]
875
+ valid_feature = valid_feature[occupancy]
876
+
877
+ print(threshold, "randomly sample to save memory")
878
+
879
+ return valid_coords, valid_feature
880
+
881
+ @torch.no_grad()
882
+ def extract_fields(self, bound_min, bound_max, resolution, query_func, device,
883
+ # * related to conditional feature
884
+ **kwargs
885
+ ):
886
+ N = 64
887
+ X = torch.linspace(bound_min[0], bound_max[0], resolution).to(device).split(N)
888
+ Y = torch.linspace(bound_min[1], bound_max[1], resolution).to(device).split(N)
889
+ Z = torch.linspace(bound_min[2], bound_max[2], resolution).to(device).split(N)
890
+
891
+ u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
892
+ with torch.no_grad():
893
+ for xi, xs in enumerate(X):
894
+ for yi, ys in enumerate(Y):
895
+ for zi, zs in enumerate(Z):
896
+ xx, yy, zz = torch.meshgrid(xs, ys, zs, indexing="ij")
897
+ pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1)
898
+
899
+ # ! attention, the query function is different for extract geometry and fields
900
+ output = query_func(pts, **kwargs)
901
+ sdf = output['sdf_pts_scale%d' % kwargs['lod']].reshape(len(xs), len(ys),
902
+ len(zs)).detach().cpu().numpy()
903
+
904
+ u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = -1 * sdf
905
+ return u
906
+
907
+ @torch.no_grad()
908
+ def extract_geometry(self, sdf_network, bound_min, bound_max, resolution, threshold, device, occupancy_mask=None,
909
+ # * 3d feature volume
910
+ **kwargs
911
+ ):
912
+ # logging.info('threshold: {}'.format(threshold))
913
+
914
+ u = self.extract_fields(bound_min, bound_max, resolution,
915
+ lambda pts, **kwargs: sdf_network.sdf(pts, **kwargs),
916
+ # - sdf need to be multiplied by -1
917
+ device,
918
+ # * 3d feature volume
919
+ **kwargs
920
+ )
921
+ if occupancy_mask is not None:
922
+ dX, dY, dZ = occupancy_mask.shape
923
+ empty_mask = 1 - occupancy_mask
924
+ empty_mask = empty_mask.view(1, 1, dX, dY, dZ)
925
+ # - dilation
926
+ # empty_mask = F.avg_pool3d(empty_mask, kernel_size=7, stride=1, padding=3)
927
+ empty_mask = F.interpolate(empty_mask, [resolution, resolution, resolution], mode='nearest')
928
+ empty_mask = empty_mask.view(resolution, resolution, resolution).cpu().numpy() > 0
929
+ u[empty_mask] = -100
930
+ del empty_mask
931
+
932
+ vertices, triangles = mcubes.marching_cubes(u, threshold)
933
+ b_max_np = bound_max.detach().cpu().numpy()
934
+ b_min_np = bound_min.detach().cpu().numpy()
935
+
936
+ vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
937
+ return vertices, triangles, u
938
+
939
+ @torch.no_grad()
940
+ def extract_depth_maps(self, sdf_network, con_volume, intrinsics, c2ws, H, W, near, far):
941
+ """
942
+ extract depth maps from the density volume
943
+ :param con_volume: [1, 1+C, dX, dY, dZ] can by con_volume or sdf_volume
944
+ :param c2ws: [B, 4, 4]
945
+ :param H:
946
+ :param W:
947
+ :param near:
948
+ :param far:
949
+ :return:
950
+ """
951
+ device = con_volume.device
952
+ batch_size = intrinsics.shape[0]
953
+
954
+ with torch.no_grad():
955
+ ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H),
956
+ torch.linspace(0, W - 1, W), indexing="ij") # pytorch's meshgrid has indexing='ij'
957
+ p = torch.stack([xs, ys, torch.ones_like(ys)], dim=-1) # H, W, 3
958
+
959
+ intrinsics_inv = torch.inverse(intrinsics)
960
+
961
+ p = p.view(-1, 3).float().to(device) # N_rays, 3
962
+ p = torch.matmul(intrinsics_inv[:, None, :3, :3], p[:, :, None]).squeeze() # Batch, N_rays, 3
963
+ rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # Batch, N_rays, 3
964
+ rays_v = torch.matmul(c2ws[:, None, :3, :3], rays_v[:, :, :, None]).squeeze() # Batch, N_rays, 3
965
+ rays_o = c2ws[:, None, :3, 3].expand(rays_v.shape) # Batch, N_rays, 3
966
+ rays_d = rays_v
967
+
968
+ rays_o = rays_o.contiguous().view(-1, 3)
969
+ rays_d = rays_d.contiguous().view(-1, 3)
970
+
971
+ ################## - sphere tracer to extract depth maps ######################
972
+ depth_masks_sphere, depth_maps_sphere = self.ray_tracer.extract_depth_maps(
973
+ rays_o, rays_d,
974
+ near[None, :].repeat(rays_o.shape[0], 1),
975
+ far[None, :].repeat(rays_o.shape[0], 1),
976
+ sdf_network, con_volume
977
+ )
978
+
979
+ depth_maps = depth_maps_sphere.view(batch_size, 1, H, W)
980
+ depth_masks = depth_masks_sphere.view(batch_size, 1, H, W)
981
+
982
+ depth_maps = torch.where(depth_masks, depth_maps,
983
+ torch.zeros_like(depth_masks.float()).to(device)) # fill invalid pixels by 0
984
+
985
+ return depth_maps, depth_masks
SparseNeuS_demo_v1/models/sparse_sdf_network.py ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torchsparse.tensor import PointTensor, SparseTensor
6
+ import torchsparse.nn as spnn
7
+
8
+ from tsparse.modules import SparseCostRegNet
9
+ from tsparse.torchsparse_utils import sparse_to_dense_channel
10
+ from ops.grid_sampler import grid_sample_3d, tricubic_sample_3d
11
+
12
+ # from .gru_fusion import GRUFusion
13
+ from ops.back_project import back_project_sparse_type
14
+ from ops.generate_grids import generate_grid
15
+
16
+ from inplace_abn import InPlaceABN
17
+
18
+ from models.embedder import Embedding
19
+ from models.featurenet import ConvBnReLU
20
+
21
+ import pdb
22
+ import random
23
+
24
+ torch._C._jit_set_profiling_executor(False)
25
+ torch._C._jit_set_profiling_mode(False)
26
+
27
+
28
+ @torch.jit.script
29
+ def fused_mean_variance(x, weight):
30
+ mean = torch.sum(x * weight, dim=1, keepdim=True)
31
+ var = torch.sum(weight * (x - mean) ** 2, dim=1, keepdim=True)
32
+ return mean, var
33
+
34
+
35
+ class LatentSDFLayer(nn.Module):
36
+ def __init__(self,
37
+ d_in=3,
38
+ d_out=129,
39
+ d_hidden=128,
40
+ n_layers=4,
41
+ skip_in=(4,),
42
+ multires=0,
43
+ bias=0.5,
44
+ geometric_init=True,
45
+ weight_norm=True,
46
+ activation='softplus',
47
+ d_conditional_feature=16):
48
+ super(LatentSDFLayer, self).__init__()
49
+
50
+ self.d_conditional_feature = d_conditional_feature
51
+
52
+ # concat latent code for ench layer input excepting the first layer and the last layer
53
+ dims_in = [d_in] + [d_hidden + d_conditional_feature for _ in range(n_layers - 2)] + [d_hidden]
54
+ dims_out = [d_hidden for _ in range(n_layers - 1)] + [d_out]
55
+
56
+ self.embed_fn_fine = None
57
+
58
+ if multires > 0:
59
+ embed_fn = Embedding(in_channels=d_in, N_freqs=multires) # * include the input
60
+ self.embed_fn_fine = embed_fn
61
+ dims_in[0] = embed_fn.out_channels
62
+
63
+ self.num_layers = n_layers
64
+ self.skip_in = skip_in
65
+
66
+ for l in range(0, self.num_layers - 1):
67
+ if l in self.skip_in:
68
+ in_dim = dims_in[l] + dims_in[0]
69
+ else:
70
+ in_dim = dims_in[l]
71
+
72
+ out_dim = dims_out[l]
73
+ lin = nn.Linear(in_dim, out_dim)
74
+
75
+ if geometric_init: # - from IDR code,
76
+ if l == self.num_layers - 2:
77
+ torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.pi) / np.sqrt(in_dim), std=0.0001)
78
+ torch.nn.init.constant_(lin.bias, -bias)
79
+ # the channels for latent codes are set to 0
80
+ torch.nn.init.constant_(lin.weight[:, -d_conditional_feature:], 0.0)
81
+ torch.nn.init.constant_(lin.bias[-d_conditional_feature:], 0.0)
82
+
83
+ elif multires > 0 and l == 0: # the first layer
84
+ torch.nn.init.constant_(lin.bias, 0.0)
85
+ # * the channels for position embeddings are set to 0
86
+ torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
87
+ # * the channels for the xyz coordinate (3 channels) for initialized by normal distribution
88
+ torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2) / np.sqrt(out_dim))
89
+ elif multires > 0 and l in self.skip_in:
90
+ torch.nn.init.constant_(lin.bias, 0.0)
91
+ torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
92
+ # * the channels for position embeddings (and conditional_feature) are initialized to 0
93
+ torch.nn.init.constant_(lin.weight[:, -(dims_in[0] - 3 + d_conditional_feature):], 0.0)
94
+ else:
95
+ torch.nn.init.constant_(lin.bias, 0.0)
96
+ torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
97
+ # the channels for latent code are initialized to 0
98
+ torch.nn.init.constant_(lin.weight[:, -d_conditional_feature:], 0.0)
99
+
100
+ if weight_norm:
101
+ lin = nn.utils.weight_norm(lin)
102
+
103
+ setattr(self, "lin" + str(l), lin)
104
+
105
+ if activation == 'softplus':
106
+ self.activation = nn.Softplus(beta=100)
107
+ else:
108
+ assert activation == 'relu'
109
+ self.activation = nn.ReLU()
110
+
111
+ def forward(self, inputs, latent):
112
+ inputs = inputs
113
+ if self.embed_fn_fine is not None:
114
+ inputs = self.embed_fn_fine(inputs)
115
+
116
+ # - only for lod1 network can use the pretrained params of lod0 network
117
+ if latent.shape[1] != self.d_conditional_feature:
118
+ latent = torch.cat([latent, latent], dim=1)
119
+
120
+ x = inputs
121
+ for l in range(0, self.num_layers - 1):
122
+ lin = getattr(self, "lin" + str(l))
123
+
124
+ # * due to the conditional bias, different from original neus version
125
+ if l in self.skip_in:
126
+ x = torch.cat([x, inputs], 1) / np.sqrt(2)
127
+
128
+ if 0 < l < self.num_layers - 1:
129
+ x = torch.cat([x, latent], 1)
130
+
131
+ x = lin(x)
132
+
133
+ if l < self.num_layers - 2:
134
+ x = self.activation(x)
135
+
136
+ return x
137
+
138
+
139
+ class SparseSdfNetwork(nn.Module):
140
+ '''
141
+ Coarse-to-fine sparse cost regularization network
142
+ return sparse volume feature for extracting sdf
143
+ '''
144
+
145
+ def __init__(self, lod, ch_in, voxel_size, vol_dims,
146
+ hidden_dim=128, activation='softplus',
147
+ cost_type='variance_mean',
148
+ d_pyramid_feature_compress=16,
149
+ regnet_d_out=8, num_sdf_layers=4,
150
+ multires=6,
151
+ ):
152
+ super(SparseSdfNetwork, self).__init__()
153
+
154
+ self.lod = lod # - gradually training, the current regularization lod
155
+ self.ch_in = ch_in
156
+ self.voxel_size = voxel_size # - the voxel size of the current volume
157
+ self.vol_dims = torch.tensor(vol_dims) # - the dims of the current volume
158
+
159
+ self.selected_views_num = 2 # the number of selected views for feature aggregation
160
+ self.hidden_dim = hidden_dim
161
+ self.activation = activation
162
+ self.cost_type = cost_type
163
+ self.d_pyramid_feature_compress = d_pyramid_feature_compress
164
+ self.gru_fusion = None
165
+
166
+ self.regnet_d_out = regnet_d_out
167
+ self.multires = multires
168
+
169
+ self.pos_embedder = Embedding(3, self.multires)
170
+
171
+ self.compress_layer = ConvBnReLU(
172
+ self.ch_in, self.d_pyramid_feature_compress, 3, 1, 1,
173
+ norm_act=InPlaceABN)
174
+ sparse_ch_in = self.d_pyramid_feature_compress * 2
175
+
176
+ sparse_ch_in = sparse_ch_in + 16 if self.lod > 0 else sparse_ch_in
177
+ self.sparse_costreg_net = SparseCostRegNet(
178
+ d_in=sparse_ch_in, d_out=self.regnet_d_out)
179
+ # self.regnet_d_out = self.sparse_costreg_net.d_out
180
+
181
+ if activation == 'softplus':
182
+ self.activation = nn.Softplus(beta=100)
183
+ else:
184
+ assert activation == 'relu'
185
+ self.activation = nn.ReLU()
186
+
187
+ self.sdf_layer = LatentSDFLayer(d_in=3,
188
+ d_out=self.hidden_dim + 1,
189
+ d_hidden=self.hidden_dim,
190
+ n_layers=num_sdf_layers,
191
+ multires=multires,
192
+ geometric_init=True,
193
+ weight_norm=True,
194
+ activation=activation,
195
+ d_conditional_feature=16 # self.regnet_d_out
196
+ )
197
+
198
+ def upsample(self, pre_feat, pre_coords, interval, num=8):
199
+ '''
200
+
201
+ :param pre_feat: (Tensor), features from last level, (N, C)
202
+ :param pre_coords: (Tensor), coordinates from last level, (N, 4) (4 : Batch ind, x, y, z)
203
+ :param interval: interval of voxels, interval = scale ** 2
204
+ :param num: 1 -> 8
205
+ :return: up_feat : (Tensor), upsampled features, (N*8, C)
206
+ :return: up_coords: (N*8, 4), upsampled coordinates, (4 : Batch ind, x, y, z)
207
+ '''
208
+ with torch.no_grad():
209
+ pos_list = [1, 2, 3, [1, 2], [1, 3], [2, 3], [1, 2, 3]]
210
+ n, c = pre_feat.shape
211
+ up_feat = pre_feat.unsqueeze(1).expand(-1, num, -1).contiguous()
212
+ up_coords = pre_coords.unsqueeze(1).repeat(1, num, 1).contiguous()
213
+ for i in range(num - 1):
214
+ up_coords[:, i + 1, pos_list[i]] += interval
215
+
216
+ up_feat = up_feat.view(-1, c)
217
+ up_coords = up_coords.view(-1, 4)
218
+
219
+ return up_feat, up_coords
220
+
221
+ def aggregate_multiview_features(self, multiview_features, multiview_masks):
222
+ """
223
+ aggregate mutli-view features by compute their cost variance
224
+ :param multiview_features: (num of voxels, num_of_views, c)
225
+ :param multiview_masks: (num of voxels, num_of_views)
226
+ :return:
227
+ """
228
+ num_pts, n_views, C = multiview_features.shape
229
+
230
+ counts = torch.sum(multiview_masks, dim=1, keepdim=False) # [num_pts]
231
+
232
+ assert torch.all(counts > 0) # the point is visible for at least 1 view
233
+
234
+ volume_sum = torch.sum(multiview_features, dim=1, keepdim=False) # [num_pts, C]
235
+ volume_sq_sum = torch.sum(multiview_features ** 2, dim=1, keepdim=False)
236
+
237
+ if volume_sum.isnan().sum() > 0:
238
+ import ipdb; ipdb.set_trace()
239
+
240
+ del multiview_features
241
+
242
+ counts = 1. / (counts + 1e-5)
243
+ costvar = volume_sq_sum * counts[:, None] - (volume_sum * counts[:, None]) ** 2
244
+
245
+ costvar_mean = torch.cat([costvar, volume_sum * counts[:, None]], dim=1)
246
+ del volume_sum, volume_sq_sum, counts
247
+
248
+
249
+
250
+ return costvar_mean
251
+
252
+ def sparse_to_dense_volume(self, coords, feature, vol_dims, interval, device=None):
253
+ """
254
+ convert the sparse volume into dense volume to enable trilinear sampling
255
+ to save GPU memory;
256
+ :param coords: [num_pts, 3]
257
+ :param feature: [num_pts, C]
258
+ :param vol_dims: [3] dX, dY, dZ
259
+ :param interval:
260
+ :return:
261
+ """
262
+
263
+ # * assume batch size is 1
264
+ if device is None:
265
+ device = feature.device
266
+
267
+ coords_int = (coords / interval).to(torch.int64)
268
+ vol_dims = (vol_dims / interval).to(torch.int64)
269
+
270
+ # - if stored in CPU, too slow
271
+ dense_volume = sparse_to_dense_channel(
272
+ coords_int.to(device), feature.to(device), vol_dims.to(device),
273
+ feature.shape[1], 0, device) # [X, Y, Z, C]
274
+
275
+ valid_mask_volume = sparse_to_dense_channel(
276
+ coords_int.to(device),
277
+ torch.ones([feature.shape[0], 1]).to(feature.device),
278
+ vol_dims.to(device),
279
+ 1, 0, device) # [X, Y, Z, 1]
280
+
281
+ dense_volume = dense_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0) # [1, C, X, Y, Z]
282
+ valid_mask_volume = valid_mask_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0) # [1, 1, X, Y, Z]
283
+
284
+ return dense_volume, valid_mask_volume
285
+
286
+ def get_conditional_volume(self, feature_maps, partial_vol_origin, proj_mats, sizeH=None, sizeW=None, lod=0,
287
+ pre_coords=None, pre_feats=None,
288
+ ):
289
+ """
290
+
291
+ :param feature_maps: pyramid features (B,V,C0+C1+C2,H,W) fused pyramid features
292
+ :param partial_vol_origin: [B, 3] the world coordinates of the volume origin (0,0,0)
293
+ :param proj_mats: projection matrix transform world pts into image space [B,V,4,4] suitable for original image size
294
+ :param sizeH: the H of original image size
295
+ :param sizeW: the W of original image size
296
+ :param pre_coords: the coordinates of sparse volume from the prior lod
297
+ :param pre_feats: the features of sparse volume from the prior lod
298
+ :return:
299
+ """
300
+ device = proj_mats.device
301
+ bs = feature_maps.shape[0]
302
+ N_views = feature_maps.shape[1]
303
+ minimum_visible_views = np.min([1, N_views - 1])
304
+ # import ipdb; ipdb.set_trace()
305
+ outputs = {}
306
+ pts_samples = []
307
+
308
+ # ----coarse to fine----
309
+
310
+ # * use fused pyramid feature maps are very important
311
+ if self.compress_layer is not None:
312
+ feats = self.compress_layer(feature_maps[0])
313
+ else:
314
+ feats = feature_maps[0]
315
+ feats = feats[:, None, :, :, :] # [V, B, C, H, W]
316
+ KRcam = proj_mats.permute(1, 0, 2, 3).contiguous() # [V, B, 4, 4]
317
+ interval = 1
318
+
319
+ if self.lod == 0:
320
+ # ----generate new coords----
321
+ coords = generate_grid(self.vol_dims, 1)[0]
322
+ coords = coords.view(3, -1).to(device) # [3, num_pts]
323
+ up_coords = []
324
+ for b in range(bs):
325
+ up_coords.append(torch.cat([torch.ones(1, coords.shape[-1]).to(coords.device) * b, coords]))
326
+ up_coords = torch.cat(up_coords, dim=1).permute(1, 0).contiguous()
327
+ # * since we only estimate the geometry of input reference image at one time;
328
+ # * mask the outside of the camera frustum
329
+ # import ipdb; ipdb.set_trace()
330
+ frustum_mask = back_project_sparse_type(
331
+ up_coords, partial_vol_origin, self.voxel_size,
332
+ feats, KRcam, sizeH=sizeH, sizeW=sizeW, only_mask=True) # [num_pts, n_views]
333
+ frustum_mask = torch.sum(frustum_mask, dim=-1) > minimum_visible_views # ! here should be large
334
+ up_coords = up_coords[frustum_mask] # [num_pts_valid, 4]
335
+
336
+ else:
337
+ # ----upsample coords----
338
+ assert pre_feats is not None
339
+ assert pre_coords is not None
340
+ up_feat, up_coords = self.upsample(pre_feats, pre_coords, 1)
341
+
342
+ # ----back project----
343
+ # give each valid 3d grid point all valid 2D features and masks
344
+ multiview_features, multiview_masks = back_project_sparse_type(
345
+ up_coords, partial_vol_origin, self.voxel_size, feats,
346
+ KRcam, sizeH=sizeH, sizeW=sizeW) # (num of voxels, num_of_views, c), (num of voxels, num_of_views)
347
+ # num_of_views = all views
348
+
349
+ # if multiview_features.isnan().sum() > 0:
350
+ # import ipdb; ipdb.set_trace()
351
+
352
+ # import ipdb; ipdb.set_trace()
353
+ if self.lod > 0:
354
+ # ! need another invalid voxels filtering
355
+ frustum_mask = torch.sum(multiview_masks, dim=-1) > 1
356
+ up_feat = up_feat[frustum_mask]
357
+ up_coords = up_coords[frustum_mask]
358
+ multiview_features = multiview_features[frustum_mask]
359
+ multiview_masks = multiview_masks[frustum_mask]
360
+ # if multiview_features.isnan().sum() > 0:
361
+ # import ipdb; ipdb.set_trace()
362
+ volume = self.aggregate_multiview_features(multiview_features, multiview_masks) # compute variance for all images features
363
+ # import ipdb; ipdb.set_trace()
364
+
365
+ # if volume.isnan().sum() > 0:
366
+ # import ipdb; ipdb.set_trace()
367
+
368
+ del multiview_features, multiview_masks
369
+
370
+ # ----concat feature from last stage----
371
+ if self.lod != 0:
372
+ feat = torch.cat([volume, up_feat], dim=1)
373
+ else:
374
+ feat = volume
375
+
376
+ # batch index is in the last position
377
+ r_coords = up_coords[:, [1, 2, 3, 0]]
378
+
379
+ # if feat.isnan().sum() > 0:
380
+ # print('feat has nan:', feat.isnan().sum())
381
+ # import ipdb; ipdb.set_trace()
382
+
383
+ sparse_feat = SparseTensor(feat, r_coords.to(
384
+ torch.int32)) # - directly use sparse tensor to avoid point2voxel operations
385
+ # import ipdb; ipdb.set_trace()
386
+ feat = self.sparse_costreg_net(sparse_feat)
387
+
388
+ dense_volume, valid_mask_volume = self.sparse_to_dense_volume(up_coords[:, 1:], feat, self.vol_dims, interval,
389
+ device=None) # [1, C/1, X, Y, Z]
390
+
391
+ # if dense_volume.isnan().sum() > 0:
392
+ # import ipdb; ipdb.set_trace()
393
+
394
+
395
+ outputs['dense_volume_scale%d' % self.lod] = dense_volume # [1, 16, 96, 96, 96]
396
+ outputs['valid_mask_volume_scale%d' % self.lod] = valid_mask_volume # [1, 1, 96, 96, 96]
397
+ outputs['visible_mask_scale%d' % self.lod] = valid_mask_volume # [1, 1, 96, 96, 96]
398
+ outputs['coords_scale%d' % self.lod] = generate_grid(self.vol_dims, interval).to(device)
399
+ # import ipdb; ipdb.set_trace()
400
+ return outputs
401
+
402
+ def sdf(self, pts, conditional_volume, lod):
403
+ num_pts = pts.shape[0]
404
+ device = pts.device
405
+ pts_ = pts.clone()
406
+ pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1)
407
+
408
+ pts = torch.flip(pts, dims=[-1])
409
+ # import ipdb; ipdb.set_trace()
410
+ sampled_feature = grid_sample_3d(conditional_volume, pts) # [1, c, 1, 1, num_pts]
411
+ sampled_feature = sampled_feature.view(-1, num_pts).permute(1, 0).contiguous().to(device)
412
+
413
+ sdf_pts = self.sdf_layer(pts_, sampled_feature)
414
+
415
+ outputs = {}
416
+ outputs['sdf_pts_scale%d' % lod] = sdf_pts[:, :1]
417
+ outputs['sdf_features_pts_scale%d' % lod] = sdf_pts[:, 1:]
418
+ outputs['sampled_latent_scale%d' % lod] = sampled_feature
419
+
420
+ return outputs
421
+
422
+ @torch.no_grad()
423
+ def sdf_from_sdfvolume(self, pts, sdf_volume, lod=0):
424
+ num_pts = pts.shape[0]
425
+ device = pts.device
426
+ pts_ = pts.clone()
427
+ pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1)
428
+
429
+ pts = torch.flip(pts, dims=[-1])
430
+
431
+ sdf = torch.nn.functional.grid_sample(sdf_volume, pts, mode='bilinear', align_corners=True,
432
+ padding_mode='border')
433
+ sdf = sdf.view(-1, num_pts).permute(1, 0).contiguous().to(device)
434
+
435
+ outputs = {}
436
+ outputs['sdf_pts_scale%d' % lod] = sdf
437
+
438
+ return outputs
439
+
440
+ @torch.no_grad()
441
+ def get_sdf_volume(self, conditional_volume, mask_volume, coords_volume, partial_origin):
442
+ """
443
+
444
+ :param conditional_volume: [1,C, dX,dY,dZ]
445
+ :param mask_volume: [1,1, dX,dY,dZ]
446
+ :param coords_volume: [1,3, dX,dY,dZ]
447
+ :return:
448
+ """
449
+ device = conditional_volume.device
450
+ chunk_size = 10240
451
+
452
+ _, C, dX, dY, dZ = conditional_volume.shape
453
+ conditional_volume = conditional_volume.view(C, dX * dY * dZ).permute(1, 0).contiguous()
454
+ mask_volume = mask_volume.view(-1)
455
+ coords_volume = coords_volume.view(3, dX * dY * dZ).permute(1, 0).contiguous()
456
+
457
+ pts = coords_volume * self.voxel_size + partial_origin # [dX*dY*dZ, 3]
458
+
459
+ sdf_volume = torch.ones([dX * dY * dZ, 1]).float().to(device)
460
+
461
+ conditional_volume = conditional_volume[mask_volume > 0]
462
+ pts = pts[mask_volume > 0]
463
+ conditional_volume = conditional_volume.split(chunk_size)
464
+ pts = pts.split(chunk_size)
465
+
466
+ sdf_all = []
467
+ for pts_part, feature_part in zip(pts, conditional_volume):
468
+ sdf_part = self.sdf_layer(pts_part, feature_part)[:, :1]
469
+ sdf_all.append(sdf_part)
470
+
471
+ sdf_all = torch.cat(sdf_all, dim=0)
472
+ sdf_volume[mask_volume > 0] = sdf_all
473
+ sdf_volume = sdf_volume.view(1, 1, dX, dY, dZ)
474
+ return sdf_volume
475
+
476
+ def gradient(self, x, conditional_volume, lod):
477
+ """
478
+ return the gradient of specific lod
479
+ :param x:
480
+ :param lod:
481
+ :return:
482
+ """
483
+ x.requires_grad_(True)
484
+ # import ipdb; ipdb.set_trace()
485
+ with torch.enable_grad():
486
+ output = self.sdf(x, conditional_volume, lod)
487
+ y = output['sdf_pts_scale%d' % lod]
488
+
489
+ d_output = torch.ones_like(y, requires_grad=False, device=y.device)
490
+ # ! Distributed Data Parallel doesn’t work with torch.autograd.grad()
491
+ # ! (i.e. it will only work if gradients are to be accumulated in .grad attributes of parameters).
492
+ gradients = torch.autograd.grad(
493
+ outputs=y,
494
+ inputs=x,
495
+ grad_outputs=d_output,
496
+ create_graph=True,
497
+ retain_graph=True,
498
+ only_inputs=True)[0]
499
+ return gradients.unsqueeze(1)
500
+
501
+
502
+ def sparse_to_dense_volume(coords, feature, vol_dims, interval, device=None):
503
+ """
504
+ convert the sparse volume into dense volume to enable trilinear sampling
505
+ to save GPU memory;
506
+ :param coords: [num_pts, 3]
507
+ :param feature: [num_pts, C]
508
+ :param vol_dims: [3] dX, dY, dZ
509
+ :param interval:
510
+ :return:
511
+ """
512
+
513
+ # * assume batch size is 1
514
+ if device is None:
515
+ device = feature.device
516
+
517
+ coords_int = (coords / interval).to(torch.int64)
518
+ vol_dims = (vol_dims / interval).to(torch.int64)
519
+
520
+ # - if stored in CPU, too slow
521
+ dense_volume = sparse_to_dense_channel(
522
+ coords_int.to(device), feature.to(device), vol_dims.to(device),
523
+ feature.shape[1], 0, device) # [X, Y, Z, C]
524
+
525
+ valid_mask_volume = sparse_to_dense_channel(
526
+ coords_int.to(device),
527
+ torch.ones([feature.shape[0], 1]).to(feature.device),
528
+ vol_dims.to(device),
529
+ 1, 0, device) # [X, Y, Z, 1]
530
+
531
+ dense_volume = dense_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0) # [1, C, X, Y, Z]
532
+ valid_mask_volume = valid_mask_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0) # [1, 1, X, Y, Z]
533
+
534
+ return dense_volume, valid_mask_volume
535
+
536
+
537
+ class SdfVolume(nn.Module):
538
+ def __init__(self, volume, coords=None, type='dense'):
539
+ super(SdfVolume, self).__init__()
540
+ self.volume = torch.nn.Parameter(volume, requires_grad=True)
541
+ self.coords = coords
542
+ self.type = type
543
+
544
+ def forward(self):
545
+ return self.volume
546
+
547
+
548
+ class FinetuneOctreeSdfNetwork(nn.Module):
549
+ '''
550
+ After obtain the conditional volume from generalized network;
551
+ directly optimize the conditional volume
552
+ The conditional volume is still sparse
553
+ '''
554
+
555
+ def __init__(self, voxel_size, vol_dims,
556
+ origin=[-1., -1., -1.],
557
+ hidden_dim=128, activation='softplus',
558
+ regnet_d_out=8,
559
+ multires=6,
560
+ if_fitted_rendering=True,
561
+ num_sdf_layers=4,
562
+ ):
563
+ super(FinetuneOctreeSdfNetwork, self).__init__()
564
+
565
+ self.voxel_size = voxel_size # - the voxel size of the current volume
566
+ self.vol_dims = torch.tensor(vol_dims) # - the dims of the current volume
567
+
568
+ self.origin = torch.tensor(origin).to(torch.float32)
569
+
570
+ self.hidden_dim = hidden_dim
571
+ self.activation = activation
572
+
573
+ self.regnet_d_out = regnet_d_out
574
+
575
+ self.if_fitted_rendering = if_fitted_rendering
576
+ self.multires = multires
577
+ # d_in_embedding = self.regnet_d_out if self.pos_add_type == 'latent' else 3
578
+ # self.pos_embedder = Embedding(d_in_embedding, self.multires)
579
+
580
+ # - the optimized parameters
581
+ self.sparse_volume_lod0 = None
582
+ self.sparse_coords_lod0 = None
583
+
584
+ if activation == 'softplus':
585
+ self.activation = nn.Softplus(beta=100)
586
+ else:
587
+ assert activation == 'relu'
588
+ self.activation = nn.ReLU()
589
+
590
+ self.sdf_layer = LatentSDFLayer(d_in=3,
591
+ d_out=self.hidden_dim + 1,
592
+ d_hidden=self.hidden_dim,
593
+ n_layers=num_sdf_layers,
594
+ multires=multires,
595
+ geometric_init=True,
596
+ weight_norm=True,
597
+ activation=activation,
598
+ d_conditional_feature=16 # self.regnet_d_out
599
+ )
600
+
601
+ # - add mlp rendering when finetuning
602
+ self.renderer = None
603
+
604
+ d_in_renderer = 3 + self.regnet_d_out + 3 + 3
605
+ self.renderer = BlendingRenderingNetwork(
606
+ d_feature=self.hidden_dim - 1,
607
+ mode='idr', # ! the view direction influence a lot
608
+ d_in=d_in_renderer,
609
+ d_out=50, # maximum 50 images
610
+ d_hidden=self.hidden_dim,
611
+ n_layers=3,
612
+ weight_norm=True,
613
+ multires_view=4,
614
+ squeeze_out=True,
615
+ )
616
+
617
+ def initialize_conditional_volumes(self, dense_volume_lod0, dense_volume_mask_lod0,
618
+ sparse_volume_lod0=None, sparse_coords_lod0=None):
619
+ """
620
+
621
+ :param dense_volume_lod0: [1,C,dX,dY,dZ]
622
+ :param dense_volume_mask_lod0: [1,1,dX,dY,dZ]
623
+ :param dense_volume_lod1:
624
+ :param dense_volume_mask_lod1:
625
+ :return:
626
+ """
627
+
628
+ if sparse_volume_lod0 is None:
629
+ device = dense_volume_lod0.device
630
+ _, C, dX, dY, dZ = dense_volume_lod0.shape
631
+
632
+ dense_volume_lod0 = dense_volume_lod0.view(C, dX * dY * dZ).permute(1, 0).contiguous()
633
+ mask_lod0 = dense_volume_mask_lod0.view(dX * dY * dZ) > 0
634
+
635
+ self.sparse_volume_lod0 = SdfVolume(dense_volume_lod0[mask_lod0], type='sparse')
636
+
637
+ coords = generate_grid(self.vol_dims, 1)[0] # [3, dX, dY, dZ]
638
+ coords = coords.view(3, dX * dY * dZ).permute(1, 0).to(device)
639
+ self.sparse_coords_lod0 = torch.nn.Parameter(coords[mask_lod0], requires_grad=False)
640
+ else:
641
+ self.sparse_volume_lod0 = SdfVolume(sparse_volume_lod0, type='sparse')
642
+ self.sparse_coords_lod0 = torch.nn.Parameter(sparse_coords_lod0, requires_grad=False)
643
+
644
+ def get_conditional_volume(self):
645
+ dense_volume, valid_mask_volume = sparse_to_dense_volume(
646
+ self.sparse_coords_lod0,
647
+ self.sparse_volume_lod0(), self.vol_dims, interval=1,
648
+ device=None) # [1, C/1, X, Y, Z]
649
+
650
+ # valid_mask_volume = self.dense_volume_mask_lod0
651
+
652
+ outputs = {}
653
+ outputs['dense_volume_scale%d' % 0] = dense_volume
654
+ outputs['valid_mask_volume_scale%d' % 0] = valid_mask_volume
655
+
656
+ return outputs
657
+
658
+ def tv_regularizer(self):
659
+ dense_volume, valid_mask_volume = sparse_to_dense_volume(
660
+ self.sparse_coords_lod0,
661
+ self.sparse_volume_lod0(), self.vol_dims, interval=1,
662
+ device=None) # [1, C/1, X, Y, Z]
663
+
664
+ dx = (dense_volume[:, :, 1:, :, :] - dense_volume[:, :, :-1, :, :]) ** 2 # [1, C/1, X-1, Y, Z]
665
+ dy = (dense_volume[:, :, :, 1:, :] - dense_volume[:, :, :, :-1, :]) ** 2 # [1, C/1, X, Y-1, Z]
666
+ dz = (dense_volume[:, :, :, :, 1:] - dense_volume[:, :, :, :, :-1]) ** 2 # [1, C/1, X, Y, Z-1]
667
+
668
+ tv = dx[:, :, :, :-1, :-1] + dy[:, :, :-1, :, :-1] + dz[:, :, :-1, :-1, :] # [1, C/1, X-1, Y-1, Z-1]
669
+
670
+ mask = valid_mask_volume[:, :, :-1, :-1, :-1] * valid_mask_volume[:, :, 1:, :-1, :-1] * \
671
+ valid_mask_volume[:, :, :-1, 1:, :-1] * valid_mask_volume[:, :, :-1, :-1, 1:]
672
+
673
+ tv = torch.sqrt(tv + 1e-6).mean(dim=1, keepdim=True) * mask
674
+ # tv = tv.mean(dim=1, keepdim=True) * mask
675
+
676
+ assert torch.all(~torch.isnan(tv))
677
+
678
+ return torch.mean(tv)
679
+
680
+ def sdf(self, pts, conditional_volume, lod):
681
+
682
+ outputs = {}
683
+
684
+ num_pts = pts.shape[0]
685
+ device = pts.device
686
+ pts_ = pts.clone()
687
+ pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1)
688
+
689
+ pts = torch.flip(pts, dims=[-1])
690
+
691
+ sampled_feature = grid_sample_3d(conditional_volume, pts) # [1, c, 1, 1, num_pts]
692
+ sampled_feature = sampled_feature.view(-1, num_pts).permute(1, 0).contiguous()
693
+ outputs['sampled_latent_scale%d' % lod] = sampled_feature
694
+
695
+ sdf_pts = self.sdf_layer(pts_, sampled_feature)
696
+
697
+ lod = 0
698
+ outputs['sdf_pts_scale%d' % lod] = sdf_pts[:, :1]
699
+ outputs['sdf_features_pts_scale%d' % lod] = sdf_pts[:, 1:]
700
+
701
+ return outputs
702
+
703
+ def color_blend(self, pts, position, normals, view_dirs, feature_vectors, img_index,
704
+ pts_pixel_color, pts_pixel_mask, pts_patch_color=None, pts_patch_mask=None):
705
+
706
+ return self.renderer(torch.cat([pts, position], dim=-1), normals, view_dirs, feature_vectors,
707
+ img_index, pts_pixel_color, pts_pixel_mask,
708
+ pts_patch_color=pts_patch_color, pts_patch_mask=pts_patch_mask)
709
+
710
+ def gradient(self, x, conditional_volume, lod):
711
+ """
712
+ return the gradient of specific lod
713
+ :param x:
714
+ :param lod:
715
+ :return:
716
+ """
717
+ x.requires_grad_(True)
718
+ output = self.sdf(x, conditional_volume, lod)
719
+ y = output['sdf_pts_scale%d' % 0]
720
+
721
+ d_output = torch.ones_like(y, requires_grad=False, device=y.device)
722
+
723
+ gradients = torch.autograd.grad(
724
+ outputs=y,
725
+ inputs=x,
726
+ grad_outputs=d_output,
727
+ create_graph=True,
728
+ retain_graph=True,
729
+ only_inputs=True)[0]
730
+ return gradients.unsqueeze(1)
731
+
732
+ @torch.no_grad()
733
+ def prune_dense_mask(self, threshold=0.02):
734
+ """
735
+ Just gradually prune the mask of dense volume to decrease the number of sdf network inference
736
+ :return:
737
+ """
738
+ chunk_size = 10240
739
+ coords = generate_grid(self.vol_dims_lod0, 1)[0] # [3, dX, dY, dZ]
740
+
741
+ _, dX, dY, dZ = coords.shape
742
+
743
+ pts = coords.view(3, -1).permute(1,
744
+ 0).contiguous() * self.voxel_size_lod0 + self.origin[None, :] # [dX*dY*dZ, 3]
745
+
746
+ # dense_volume = self.dense_volume_lod0() # [1,C,dX,dY,dZ]
747
+ dense_volume, _ = sparse_to_dense_volume(
748
+ self.sparse_coords_lod0,
749
+ self.sparse_volume_lod0(), self.vol_dims_lod0, interval=1,
750
+ device=None) # [1, C/1, X, Y, Z]
751
+
752
+ sdf_volume = torch.ones([dX * dY * dZ, 1]).float().to(dense_volume.device) * 100
753
+
754
+ mask = self.dense_volume_mask_lod0.view(-1) > 0
755
+
756
+ pts_valid = pts[mask].to(dense_volume.device)
757
+ feature_valid = dense_volume.view(self.regnet_d_out, -1).permute(1, 0).contiguous()[mask]
758
+
759
+ pts_valid = pts_valid.split(chunk_size)
760
+ feature_valid = feature_valid.split(chunk_size)
761
+
762
+ sdf_list = []
763
+
764
+ for pts_part, feature_part in zip(pts_valid, feature_valid):
765
+ sdf_part = self.sdf_layer(pts_part, feature_part)[:, :1]
766
+ sdf_list.append(sdf_part)
767
+
768
+ sdf_list = torch.cat(sdf_list, dim=0)
769
+
770
+ sdf_volume[mask] = sdf_list
771
+
772
+ occupancy_mask = torch.abs(sdf_volume) < threshold # [num_pts, 1]
773
+
774
+ # - dilate
775
+ occupancy_mask = occupancy_mask.float()
776
+ occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ)
777
+ occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3)
778
+ occupancy_mask = occupancy_mask > 0
779
+
780
+ self.dense_volume_mask_lod0 = torch.logical_and(self.dense_volume_mask_lod0,
781
+ occupancy_mask).float() # (1, 1, dX, dY, dZ)
782
+
783
+
784
+ class BlendingRenderingNetwork(nn.Module):
785
+ def __init__(
786
+ self,
787
+ d_feature,
788
+ mode,
789
+ d_in,
790
+ d_out,
791
+ d_hidden,
792
+ n_layers,
793
+ weight_norm=True,
794
+ multires_view=0,
795
+ squeeze_out=True,
796
+ ):
797
+ super(BlendingRenderingNetwork, self).__init__()
798
+
799
+ self.mode = mode
800
+ self.squeeze_out = squeeze_out
801
+ dims = [d_in + d_feature] + [d_hidden for _ in range(n_layers)] + [d_out]
802
+
803
+ self.embedder = None
804
+ if multires_view > 0:
805
+ self.embedder = Embedding(3, multires_view)
806
+ dims[0] += (self.embedder.out_channels - 3)
807
+
808
+ self.num_layers = len(dims)
809
+
810
+ for l in range(0, self.num_layers - 1):
811
+ out_dim = dims[l + 1]
812
+ lin = nn.Linear(dims[l], out_dim)
813
+
814
+ if weight_norm:
815
+ lin = nn.utils.weight_norm(lin)
816
+
817
+ setattr(self, "lin" + str(l), lin)
818
+
819
+ self.relu = nn.ReLU()
820
+
821
+ self.color_volume = None
822
+
823
+ self.softmax = nn.Softmax(dim=1)
824
+
825
+ self.type = 'blending'
826
+
827
+ def sample_pts_from_colorVolume(self, pts):
828
+ device = pts.device
829
+ num_pts = pts.shape[0]
830
+ pts_ = pts.clone()
831
+ pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1)
832
+
833
+ pts = torch.flip(pts, dims=[-1])
834
+
835
+ sampled_color = grid_sample_3d(self.color_volume, pts) # [1, c, 1, 1, num_pts]
836
+ sampled_color = sampled_color.view(-1, num_pts).permute(1, 0).contiguous().to(device)
837
+
838
+ return sampled_color
839
+
840
+ def forward(self, position, normals, view_dirs, feature_vectors, img_index,
841
+ pts_pixel_color, pts_pixel_mask, pts_patch_color=None, pts_patch_mask=None):
842
+ """
843
+
844
+ :param position: can be 3d coord or interpolated volume latent
845
+ :param normals:
846
+ :param view_dirs:
847
+ :param feature_vectors:
848
+ :param img_index: [N_views], used to extract corresponding weights
849
+ :param pts_pixel_color: [N_pts, N_views, 3]
850
+ :param pts_pixel_mask: [N_pts, N_views]
851
+ :param pts_patch_color: [N_pts, N_views, Npx, 3]
852
+ :return:
853
+ """
854
+ if self.embedder is not None:
855
+ view_dirs = self.embedder(view_dirs)
856
+
857
+ rendering_input = None
858
+
859
+ if self.mode == 'idr':
860
+ rendering_input = torch.cat([position, view_dirs, normals, feature_vectors], dim=-1)
861
+ elif self.mode == 'no_view_dir':
862
+ rendering_input = torch.cat([position, normals, feature_vectors], dim=-1)
863
+ elif self.mode == 'no_normal':
864
+ rendering_input = torch.cat([position, view_dirs, feature_vectors], dim=-1)
865
+ elif self.mode == 'no_points':
866
+ rendering_input = torch.cat([view_dirs, normals, feature_vectors], dim=-1)
867
+ elif self.mode == 'no_points_no_view_dir':
868
+ rendering_input = torch.cat([normals, feature_vectors], dim=-1)
869
+
870
+ x = rendering_input
871
+
872
+ for l in range(0, self.num_layers - 1):
873
+ lin = getattr(self, "lin" + str(l))
874
+
875
+ x = lin(x)
876
+
877
+ if l < self.num_layers - 2:
878
+ x = self.relu(x) # [n_pts, d_out]
879
+
880
+ ## extract value based on img_index
881
+ x_extracted = torch.index_select(x, 1, img_index.long())
882
+
883
+ weights_pixel = self.softmax(x_extracted) # [n_pts, N_views]
884
+ weights_pixel = weights_pixel * pts_pixel_mask
885
+ weights_pixel = weights_pixel / (
886
+ torch.sum(weights_pixel.float(), dim=1, keepdim=True) + 1e-8) # [n_pts, N_views]
887
+ final_pixel_color = torch.sum(pts_pixel_color * weights_pixel[:, :, None], dim=1,
888
+ keepdim=False) # [N_pts, 3]
889
+
890
+ final_pixel_mask = torch.sum(pts_pixel_mask.float(), dim=1, keepdim=True) > 0 # [N_pts, 1]
891
+
892
+ final_patch_color, final_patch_mask = None, None
893
+ # pts_patch_color [N_pts, N_views, Npx, 3]; pts_patch_mask [N_pts, N_views, Npx]
894
+ if pts_patch_color is not None:
895
+ N_pts, N_views, Npx, _ = pts_patch_color.shape
896
+ patch_mask = torch.sum(pts_patch_mask, dim=-1, keepdim=False) > Npx - 1 # [N_pts, N_views]
897
+
898
+ weights_patch = self.softmax(x_extracted) # [N_pts, N_views]
899
+ weights_patch = weights_patch * patch_mask
900
+ weights_patch = weights_patch / (
901
+ torch.sum(weights_patch.float(), dim=1, keepdim=True) + 1e-8) # [n_pts, N_views]
902
+
903
+ final_patch_color = torch.sum(pts_patch_color * weights_patch[:, :, None, None], dim=1,
904
+ keepdim=False) # [N_pts, Npx, 3]
905
+ final_patch_mask = torch.sum(patch_mask, dim=1, keepdim=True) > 0 # [N_pts, 1] at least one image sees
906
+
907
+ return final_pixel_color, final_pixel_mask, final_patch_color, final_patch_mask
SparseNeuS_demo_v1/models/trainer_generic.py ADDED
@@ -0,0 +1,1207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ decouple the trainer with the renderer
3
+ """
4
+ import os
5
+ import cv2 as cv
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+ import numpy as np
11
+ import trimesh
12
+ from icecream import ic
13
+
14
+ from utils.misc_utils import visualize_depth_numpy
15
+
16
+ from loss.depth_metric import compute_depth_errors
17
+
18
+ from loss.depth_loss import DepthLoss, DepthSmoothLoss
19
+
20
+ from models.sparse_neus_renderer import SparseNeuSRenderer
21
+
22
+ class GenericTrainer(nn.Module):
23
+ def __init__(self,
24
+ rendering_network_outside,
25
+ pyramid_feature_network_lod0,
26
+ pyramid_feature_network_lod1,
27
+ sdf_network_lod0,
28
+ sdf_network_lod1,
29
+ variance_network_lod0,
30
+ variance_network_lod1,
31
+ rendering_network_lod0,
32
+ rendering_network_lod1,
33
+ n_samples_lod0,
34
+ n_importance_lod0,
35
+ n_samples_lod1,
36
+ n_importance_lod1,
37
+ n_outside,
38
+ perturb,
39
+ alpha_type='div',
40
+ conf=None,
41
+ timestamp="",
42
+ mode='train',
43
+ base_exp_dir=None,
44
+ ):
45
+ super(GenericTrainer, self).__init__()
46
+
47
+ self.conf = conf
48
+ self.timestamp = timestamp
49
+
50
+
51
+ self.base_exp_dir = base_exp_dir
52
+
53
+
54
+ self.anneal_start = self.conf.get_float('train.anneal_start', default=0.0)
55
+ self.anneal_end = self.conf.get_float('train.anneal_end', default=0.0)
56
+ self.anneal_start_lod1 = self.conf.get_float('train.anneal_start_lod1', default=0.0)
57
+ self.anneal_end_lod1 = self.conf.get_float('train.anneal_end_lod1', default=0.0)
58
+
59
+ # network setups
60
+ self.rendering_network_outside = rendering_network_outside
61
+ self.pyramid_feature_network_geometry_lod0 = pyramid_feature_network_lod0 # 2D pyramid feature network for geometry
62
+ self.pyramid_feature_network_geometry_lod1 = pyramid_feature_network_lod1 # use differnet networks for the two lods
63
+
64
+ # when num_lods==2, may consume too much memeory
65
+ self.sdf_network_lod0 = sdf_network_lod0
66
+ self.sdf_network_lod1 = sdf_network_lod1
67
+
68
+ # - warpped by ModuleList to support DataParallel
69
+ self.variance_network_lod0 = variance_network_lod0
70
+ self.variance_network_lod1 = variance_network_lod1
71
+
72
+ self.rendering_network_lod0 = rendering_network_lod0
73
+ self.rendering_network_lod1 = rendering_network_lod1
74
+
75
+ self.n_samples_lod0 = n_samples_lod0
76
+ self.n_importance_lod0 = n_importance_lod0
77
+ self.n_samples_lod1 = n_samples_lod1
78
+ self.n_importance_lod1 = n_importance_lod1
79
+ self.n_outside = n_outside
80
+ self.num_lods = conf.get_int('model.num_lods') # the number of octree lods
81
+ self.perturb = perturb
82
+ self.alpha_type = alpha_type
83
+
84
+ # - the two renderers
85
+ self.sdf_renderer_lod0 = SparseNeuSRenderer(
86
+ self.rendering_network_outside,
87
+ self.sdf_network_lod0,
88
+ self.variance_network_lod0,
89
+ self.rendering_network_lod0,
90
+ self.n_samples_lod0,
91
+ self.n_importance_lod0,
92
+ self.n_outside,
93
+ self.perturb,
94
+ alpha_type='div',
95
+ conf=self.conf)
96
+
97
+ self.sdf_renderer_lod1 = SparseNeuSRenderer(
98
+ self.rendering_network_outside,
99
+ self.sdf_network_lod1,
100
+ self.variance_network_lod1,
101
+ self.rendering_network_lod1,
102
+ self.n_samples_lod1,
103
+ self.n_importance_lod1,
104
+ self.n_outside,
105
+ self.perturb,
106
+ alpha_type='div',
107
+ conf=self.conf)
108
+
109
+ self.if_fix_lod0_networks = self.conf.get_bool('train.if_fix_lod0_networks')
110
+
111
+ # sdf network weights
112
+ self.sdf_igr_weight = self.conf.get_float('train.sdf_igr_weight')
113
+ self.sdf_sparse_weight = self.conf.get_float('train.sdf_sparse_weight', default=0)
114
+ self.sdf_decay_param = self.conf.get_float('train.sdf_decay_param', default=100)
115
+ self.fg_bg_weight = self.conf.get_float('train.fg_bg_weight', default=0.00)
116
+ self.bg_ratio = self.conf.get_float('train.bg_ratio', default=0.0)
117
+
118
+ self.depth_criterion = DepthLoss()
119
+
120
+ # - DataParallel mode, cannot modify attributes in forward()
121
+ # self.iter_step = 0
122
+ self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq')
123
+
124
+ # - True for finetuning; False for general training
125
+ self.if_fitted_rendering = self.conf.get_bool('train.if_fitted_rendering', default=False)
126
+
127
+ self.prune_depth_filter = self.conf.get_bool('model.prune_depth_filter', default=False)
128
+
129
+ def get_trainable_params(self):
130
+ # set trainable params
131
+
132
+ self.params_to_train = []
133
+
134
+ if not self.if_fix_lod0_networks:
135
+ # load pretrained featurenet
136
+ self.params_to_train += list(self.pyramid_feature_network_geometry_lod0.parameters())
137
+ self.params_to_train += list(self.sdf_network_lod0.parameters())
138
+ self.params_to_train += list(self.variance_network_lod0.parameters())
139
+
140
+ if self.rendering_network_lod0 is not None:
141
+ self.params_to_train += list(self.rendering_network_lod0.parameters())
142
+
143
+ if self.sdf_network_lod1 is not None:
144
+ # load pretrained featurenet
145
+ self.params_to_train += list(self.pyramid_feature_network_geometry_lod1.parameters())
146
+
147
+ self.params_to_train += list(self.sdf_network_lod1.parameters())
148
+ self.params_to_train += list(self.variance_network_lod1.parameters())
149
+ if self.rendering_network_lod1 is not None:
150
+ self.params_to_train += list(self.rendering_network_lod1.parameters())
151
+
152
+ return self.params_to_train
153
+
154
+ def train_step(self, sample,
155
+ perturb_overwrite=-1,
156
+ background_rgb=None,
157
+ alpha_inter_ratio_lod0=0.0,
158
+ alpha_inter_ratio_lod1=0.0,
159
+ iter_step=0,
160
+ ):
161
+ # * only support batch_size==1
162
+ # ! attention: the list of string cannot be splited in DataParallel
163
+ batch_idx = sample['batch_idx'][0]
164
+ meta = sample['meta'][batch_idx] # the scan lighting ref_view info
165
+
166
+ sizeW = sample['img_wh'][0][0]
167
+ sizeH = sample['img_wh'][0][1]
168
+ partial_vol_origin = sample['partial_vol_origin'] # [B, 3]
169
+ near, far = sample['near_fars'][0, 0, :1], sample['near_fars'][0, 0, 1:]
170
+
171
+ # the full-size ray variables
172
+ sample_rays = sample['rays']
173
+ rays_o = sample_rays['rays_o'][0]
174
+ rays_d = sample_rays['rays_v'][0]
175
+
176
+ imgs = sample['images'][0]
177
+ intrinsics = sample['intrinsics'][0]
178
+ intrinsics_l_4x = intrinsics.clone()
179
+ intrinsics_l_4x[:, :2] *= 0.25
180
+ w2cs = sample['w2cs'][0]
181
+ c2ws = sample['c2ws'][0]
182
+ proj_matrices = sample['affine_mats']
183
+ scale_mat = sample['scale_mat']
184
+ trans_mat = sample['trans_mat']
185
+
186
+ # *********************** Lod==0 ***********************
187
+ if not self.if_fix_lod0_networks:
188
+ geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs)
189
+
190
+ conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume(
191
+ feature_maps=geometry_feature_maps[None, 1:, :, :, :],
192
+ partial_vol_origin=partial_vol_origin,
193
+ proj_mats=proj_matrices[:,1:],
194
+ # proj_mats=proj_matrices,
195
+ sizeH=sizeH,
196
+ sizeW=sizeW,
197
+ lod=0,
198
+ )
199
+
200
+ else:
201
+ with torch.no_grad():
202
+ geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0)
203
+ # geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0)
204
+ conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume(
205
+ feature_maps=geometry_feature_maps[None, 1:, :, :, :],
206
+ partial_vol_origin=partial_vol_origin,
207
+ proj_mats=proj_matrices[:,1:],
208
+ # proj_mats=proj_matrices,
209
+ sizeH=sizeH,
210
+ sizeW=sizeW,
211
+ lod=0,
212
+ )
213
+ # print("Checker2:, construct cost volume")
214
+ con_volume_lod0 = conditional_features_lod0['dense_volume_scale0']
215
+
216
+ con_valid_mask_volume_lod0 = conditional_features_lod0['valid_mask_volume_scale0']
217
+ coords_lod0 = conditional_features_lod0['coords_scale0'] # [1,3,wX,wY,wZ]
218
+
219
+ # * extract depth maps for all the images
220
+ depth_maps_lod0, depth_masks_lod0 = None, None
221
+ if self.num_lods > 1:
222
+ sdf_volume_lod0 = self.sdf_network_lod0.get_sdf_volume(
223
+ con_volume_lod0, con_valid_mask_volume_lod0,
224
+ coords_lod0, partial_vol_origin) # [1, 1, dX, dY, dZ]
225
+
226
+ if self.prune_depth_filter:
227
+ depth_maps_lod0_l4x, depth_masks_lod0_l4x = self.sdf_renderer_lod0.extract_depth_maps(
228
+ self.sdf_network_lod0, sdf_volume_lod0, intrinsics_l_4x, c2ws,
229
+ sizeH // 4, sizeW // 4, near * 1.5, far)
230
+ depth_maps_lod0 = F.interpolate(depth_maps_lod0_l4x, size=(sizeH, sizeW), mode='bilinear',
231
+ align_corners=True)
232
+ depth_masks_lod0 = F.interpolate(depth_masks_lod0_l4x.float(), size=(sizeH, sizeW), mode='nearest')
233
+
234
+ # *************** losses
235
+ loss_lod0, losses_lod0, depth_statis_lod0 = None, None, None
236
+
237
+ if not self.if_fix_lod0_networks:
238
+
239
+ render_out = self.sdf_renderer_lod0.render(
240
+ rays_o, rays_d, near, far,
241
+ self.sdf_network_lod0,
242
+ self.rendering_network_lod0,
243
+ background_rgb=background_rgb,
244
+ alpha_inter_ratio=alpha_inter_ratio_lod0,
245
+ # * related to conditional feature
246
+ lod=0,
247
+ conditional_volume=con_volume_lod0,
248
+ conditional_valid_mask_volume=con_valid_mask_volume_lod0,
249
+ # * 2d feature maps
250
+ feature_maps=geometry_feature_maps,
251
+ color_maps=imgs,
252
+ w2cs=w2cs,
253
+ intrinsics=intrinsics,
254
+ img_wh=[sizeW, sizeH],
255
+ if_general_rendering=True,
256
+ if_render_with_grad=True,
257
+ )
258
+
259
+ loss_lod0, losses_lod0, depth_statis_lod0 = self.cal_losses_sdf(render_out, sample_rays,
260
+ iter_step, lod=0)
261
+
262
+ # *********************** Lod==1 ***********************
263
+
264
+ loss_lod1, losses_lod1, depth_statis_lod1 = None, None, None
265
+
266
+ if self.num_lods > 1:
267
+ geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1)
268
+ # geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1)
269
+ if self.prune_depth_filter:
270
+ pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf_depthfilter(
271
+ sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0],
272
+ depth_maps_lod0, proj_matrices[0],
273
+ partial_vol_origin, self.sdf_network_lod0.voxel_size,
274
+ near, far, self.sdf_network_lod0.voxel_size, 12)
275
+ else:
276
+ pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf(
277
+ sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0])
278
+
279
+ pre_coords[:, 1:] = pre_coords[:, 1:] * 2
280
+
281
+ # ? It seems that training gru_fusion, this part should be trainable too
282
+ conditional_features_lod1 = self.sdf_network_lod1.get_conditional_volume(
283
+ feature_maps=geometry_feature_maps_lod1[None, 1:, :, :, :],
284
+ partial_vol_origin=partial_vol_origin,
285
+ proj_mats=proj_matrices[:,1:],
286
+ # proj_mats=proj_matrices,
287
+ sizeH=sizeH,
288
+ sizeW=sizeW,
289
+ pre_coords=pre_coords,
290
+ pre_feats=pre_feats,
291
+ )
292
+
293
+ con_volume_lod1 = conditional_features_lod1['dense_volume_scale1']
294
+ con_valid_mask_volume_lod1 = conditional_features_lod1['valid_mask_volume_scale1']
295
+
296
+ # if not self.if_gru_fusion_lod1:
297
+ render_out_lod1 = self.sdf_renderer_lod1.render(
298
+ rays_o, rays_d, near, far,
299
+ self.sdf_network_lod1,
300
+ self.rendering_network_lod1,
301
+ background_rgb=background_rgb,
302
+ alpha_inter_ratio=alpha_inter_ratio_lod1,
303
+ # * related to conditional feature
304
+ lod=1,
305
+ conditional_volume=con_volume_lod1,
306
+ conditional_valid_mask_volume=con_valid_mask_volume_lod1,
307
+ # * 2d feature maps
308
+ feature_maps=geometry_feature_maps_lod1,
309
+ color_maps=imgs,
310
+ w2cs=w2cs,
311
+ intrinsics=intrinsics,
312
+ img_wh=[sizeW, sizeH],
313
+ bg_ratio=self.bg_ratio,
314
+ )
315
+ loss_lod1, losses_lod1, depth_statis_lod1 = self.cal_losses_sdf(render_out_lod1, sample_rays,
316
+ iter_step, lod=1)
317
+
318
+ # print("Checker3:, compute losses")
319
+ # # - extract mesh
320
+ if iter_step % self.val_mesh_freq == 0:
321
+ torch.cuda.empty_cache()
322
+ self.validate_mesh(self.sdf_network_lod0,
323
+ self.sdf_renderer_lod0.extract_geometry,
324
+ conditional_volume=con_volume_lod0, lod=0,
325
+ threshold=0,
326
+ # occupancy_mask=con_valid_mask_volume_lod0[0, 0],
327
+ mode='train_bg', meta=meta,
328
+ iter_step=iter_step, scale_mat=scale_mat,
329
+ trans_mat=trans_mat)
330
+ torch.cuda.empty_cache()
331
+
332
+ if self.num_lods > 1:
333
+ self.validate_mesh(self.sdf_network_lod1,
334
+ self.sdf_renderer_lod1.extract_geometry,
335
+ conditional_volume=con_volume_lod1, lod=1,
336
+ # occupancy_mask=con_valid_mask_volume_lod1[0, 0].detach(),
337
+ mode='train_bg', meta=meta,
338
+ iter_step=iter_step, scale_mat=scale_mat,
339
+ trans_mat=trans_mat)
340
+ losses = {
341
+ # - lod 0
342
+ 'loss_lod0': loss_lod0,
343
+ 'losses_lod0': losses_lod0,
344
+ 'depth_statis_lod0': depth_statis_lod0,
345
+
346
+ # - lod 1
347
+ 'loss_lod1': loss_lod1,
348
+ 'losses_lod1': losses_lod1,
349
+ 'depth_statis_lod1': depth_statis_lod1,
350
+
351
+ }
352
+
353
+ return losses
354
+
355
+ def val_step(self, sample,
356
+ perturb_overwrite=-1,
357
+ background_rgb=None,
358
+ alpha_inter_ratio_lod0=0.0,
359
+ alpha_inter_ratio_lod1=0.0,
360
+ iter_step=0,
361
+ chunk_size=512,
362
+ save_vis=False,
363
+ ):
364
+ # * only support batch_size==1
365
+ # ! attention: the list of string cannot be splited in DataParallel
366
+ batch_idx = sample['batch_idx'][0]
367
+ meta = sample['meta'][batch_idx] # the scan lighting ref_view info
368
+
369
+ sizeW = sample['img_wh'][0][0]
370
+ sizeH = sample['img_wh'][0][1]
371
+ H, W = sizeH, sizeW
372
+
373
+ partial_vol_origin = sample['partial_vol_origin'] # [B, 3]
374
+ near, far = sample['query_near_far'][0, :1], sample['query_near_far'][0, 1:]
375
+
376
+ # the ray variables
377
+ sample_rays = sample['rays']
378
+ rays_o = sample_rays['rays_o'][0]
379
+ rays_d = sample_rays['rays_v'][0]
380
+ rays_ndc_uv = sample_rays['rays_ndc_uv'][0]
381
+
382
+ imgs = sample['images'][0]
383
+ intrinsics = sample['intrinsics'][0]
384
+ intrinsics_l_4x = intrinsics.clone()
385
+ intrinsics_l_4x[:, :2] *= 0.25
386
+ w2cs = sample['w2cs'][0]
387
+ c2ws = sample['c2ws'][0]
388
+ proj_matrices = sample['affine_mats']
389
+
390
+ # render_img_idx = sample['render_img_idx'][0]
391
+ # true_img = sample['images'][0][render_img_idx]
392
+
393
+ # - the image to render
394
+ scale_mat = sample['scale_mat'] # [1,4,4] used to convert mesh into true scale
395
+ trans_mat = sample['trans_mat']
396
+ query_c2w = sample['query_c2w'] # [1,4,4]
397
+ query_w2c = sample['query_w2c'] # [1,4,4]
398
+ true_img = sample['query_image'][0]
399
+ true_img = np.uint8(true_img.permute(1, 2, 0).cpu().numpy() * 255)
400
+
401
+ depth_min, depth_max = near.cpu().numpy(), far.cpu().numpy()
402
+
403
+ scale_factor = sample['scale_factor'][0].cpu().numpy()
404
+ true_depth = sample['query_depth'] if 'query_depth' in sample.keys() else None
405
+ if true_depth is not None:
406
+ true_depth = true_depth[0].cpu().numpy()
407
+ true_depth_colored = visualize_depth_numpy(true_depth, [depth_min, depth_max])[0]
408
+ else:
409
+ true_depth_colored = None
410
+
411
+ rays_o = rays_o.reshape(-1, 3).split(chunk_size)
412
+ rays_d = rays_d.reshape(-1, 3).split(chunk_size)
413
+
414
+ # - obtain conditional features
415
+ with torch.no_grad():
416
+ # - obtain conditional features
417
+ geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0)
418
+ # - lod 0
419
+ conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume(
420
+ feature_maps=geometry_feature_maps[None, :, :, :, :],
421
+ partial_vol_origin=partial_vol_origin,
422
+ proj_mats=proj_matrices,
423
+ sizeH=sizeH,
424
+ sizeW=sizeW,
425
+ lod=0,
426
+ )
427
+
428
+ con_volume_lod0 = conditional_features_lod0['dense_volume_scale0']
429
+ con_valid_mask_volume_lod0 = conditional_features_lod0['valid_mask_volume_scale0']
430
+ coords_lod0 = conditional_features_lod0['coords_scale0'] # [1,3,wX,wY,wZ]
431
+
432
+ if self.num_lods > 1:
433
+ sdf_volume_lod0 = self.sdf_network_lod0.get_sdf_volume(
434
+ con_volume_lod0, con_valid_mask_volume_lod0,
435
+ coords_lod0, partial_vol_origin) # [1, 1, dX, dY, dZ]
436
+
437
+ depth_maps_lod0, depth_masks_lod0 = None, None
438
+ if self.prune_depth_filter:
439
+ depth_maps_lod0_l4x, depth_masks_lod0_l4x = self.sdf_renderer_lod0.extract_depth_maps(
440
+ self.sdf_network_lod0, sdf_volume_lod0,
441
+ intrinsics_l_4x, c2ws,
442
+ sizeH // 4, sizeW // 4, near * 1.5, far) # - near*1.5 is a experienced number
443
+ depth_maps_lod0 = F.interpolate(depth_maps_lod0_l4x, size=(sizeH, sizeW), mode='bilinear',
444
+ align_corners=True)
445
+ depth_masks_lod0 = F.interpolate(depth_masks_lod0_l4x.float(), size=(sizeH, sizeW), mode='nearest')
446
+
447
+ #### visualize the depth_maps_lod0 for checking
448
+ colored_depth_maps_lod0 = []
449
+ for i in range(depth_maps_lod0.shape[0]):
450
+ colored_depth_maps_lod0.append(
451
+ visualize_depth_numpy(depth_maps_lod0[i, 0].cpu().numpy(), [depth_min, depth_max])[0])
452
+
453
+ colored_depth_maps_lod0 = np.concatenate(colored_depth_maps_lod0, axis=0).astype(np.uint8)
454
+ os.makedirs(os.path.join(self.base_exp_dir, 'depth_maps_lod0'), exist_ok=True)
455
+ cv.imwrite(os.path.join(self.base_exp_dir, 'depth_maps_lod0',
456
+ '{:0>8d}_{}.png'.format(iter_step, meta)),
457
+ colored_depth_maps_lod0[:, :, ::-1])
458
+
459
+ if self.num_lods > 1:
460
+ geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1)
461
+
462
+ if self.prune_depth_filter:
463
+ pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf_depthfilter(
464
+ sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0],
465
+ depth_maps_lod0, proj_matrices[0],
466
+ partial_vol_origin, self.sdf_network_lod0.voxel_size,
467
+ near, far, self.sdf_network_lod0.voxel_size, 12)
468
+ else:
469
+ pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf(
470
+ sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0])
471
+
472
+ pre_coords[:, 1:] = pre_coords[:, 1:] * 2
473
+
474
+ with torch.no_grad():
475
+ conditional_features_lod1 = self.sdf_network_lod1.get_conditional_volume(
476
+ feature_maps=geometry_feature_maps_lod1[None, :, :, :, :],
477
+ partial_vol_origin=partial_vol_origin,
478
+ proj_mats=proj_matrices,
479
+ sizeH=sizeH,
480
+ sizeW=sizeW,
481
+ pre_coords=pre_coords,
482
+ pre_feats=pre_feats,
483
+ )
484
+
485
+ con_volume_lod1 = conditional_features_lod1['dense_volume_scale1']
486
+ con_valid_mask_volume_lod1 = conditional_features_lod1['valid_mask_volume_scale1']
487
+
488
+ out_rgb_fine = []
489
+ out_normal_fine = []
490
+ out_depth_fine = []
491
+
492
+ out_rgb_fine_lod1 = []
493
+ out_normal_fine_lod1 = []
494
+ out_depth_fine_lod1 = []
495
+
496
+ # out_depth_fine_explicit = []
497
+ if save_vis:
498
+ for rays_o_batch, rays_d_batch in zip(rays_o, rays_d):
499
+
500
+ # ****** lod 0 ****
501
+ render_out = self.sdf_renderer_lod0.render(
502
+ rays_o_batch, rays_d_batch, near, far,
503
+ self.sdf_network_lod0,
504
+ self.rendering_network_lod0,
505
+ background_rgb=background_rgb,
506
+ alpha_inter_ratio=alpha_inter_ratio_lod0,
507
+ # * related to conditional feature
508
+ lod=0,
509
+ conditional_volume=con_volume_lod0,
510
+ conditional_valid_mask_volume=con_valid_mask_volume_lod0,
511
+ # * 2d feature maps
512
+ feature_maps=geometry_feature_maps,
513
+ color_maps=imgs,
514
+ w2cs=w2cs,
515
+ intrinsics=intrinsics,
516
+ img_wh=[sizeW, sizeH],
517
+ query_c2w=query_c2w,
518
+ if_render_with_grad=False,
519
+ )
520
+
521
+ feasible = lambda key: ((key in render_out) and (render_out[key] is not None))
522
+
523
+ if feasible('depth'):
524
+ out_depth_fine.append(render_out['depth'].detach().cpu().numpy())
525
+
526
+ # if render_out['color_coarse'] is not None:
527
+ if feasible('color_fine'):
528
+ out_rgb_fine.append(render_out['color_fine'].detach().cpu().numpy())
529
+ if feasible('gradients') and feasible('weights'):
530
+ if render_out['inside_sphere'] is not None:
531
+ out_normal_fine.append((render_out['gradients'] * render_out['weights'][:,
532
+ :self.n_samples_lod0 + self.n_importance_lod0,
533
+ None] * render_out['inside_sphere'][
534
+ ..., None]).sum(dim=1).detach().cpu().numpy())
535
+ else:
536
+ out_normal_fine.append((render_out['gradients'] * render_out['weights'][:,
537
+ :self.n_samples_lod0 + self.n_importance_lod0,
538
+ None]).sum(dim=1).detach().cpu().numpy())
539
+ del render_out
540
+
541
+ # ****************** lod 1 **************************
542
+ if self.num_lods > 1:
543
+ for rays_o_batch, rays_d_batch in zip(rays_o, rays_d):
544
+ render_out_lod1 = self.sdf_renderer_lod1.render(
545
+ rays_o_batch, rays_d_batch, near, far,
546
+ self.sdf_network_lod1,
547
+ self.rendering_network_lod1,
548
+ background_rgb=background_rgb,
549
+ alpha_inter_ratio=alpha_inter_ratio_lod1,
550
+ # * related to conditional feature
551
+ lod=1,
552
+ conditional_volume=con_volume_lod1,
553
+ conditional_valid_mask_volume=con_valid_mask_volume_lod1,
554
+ # * 2d feature maps
555
+ feature_maps=geometry_feature_maps_lod1,
556
+ color_maps=imgs,
557
+ w2cs=w2cs,
558
+ intrinsics=intrinsics,
559
+ img_wh=[sizeW, sizeH],
560
+ query_c2w=query_c2w,
561
+ if_render_with_grad=False,
562
+ )
563
+
564
+ feasible = lambda key: ((key in render_out_lod1) and (render_out_lod1[key] is not None))
565
+
566
+ if feasible('depth'):
567
+ out_depth_fine_lod1.append(render_out_lod1['depth'].detach().cpu().numpy())
568
+
569
+ # if render_out['color_coarse'] is not None:
570
+ if feasible('color_fine'):
571
+ out_rgb_fine_lod1.append(render_out_lod1['color_fine'].detach().cpu().numpy())
572
+ if feasible('gradients') and feasible('weights'):
573
+ if render_out_lod1['inside_sphere'] is not None:
574
+ out_normal_fine_lod1.append((render_out_lod1['gradients'] * render_out_lod1['weights'][:,
575
+ :self.n_samples_lod1 + self.n_importance_lod1,
576
+ None] *
577
+ render_out_lod1['inside_sphere'][
578
+ ..., None]).sum(dim=1).detach().cpu().numpy())
579
+ else:
580
+ out_normal_fine_lod1.append((render_out_lod1['gradients'] * render_out_lod1['weights'][:,
581
+ :self.n_samples_lod1 + self.n_importance_lod1,
582
+ None]).sum(
583
+ dim=1).detach().cpu().numpy())
584
+ del render_out_lod1
585
+
586
+ # - save visualization of lod 0
587
+
588
+ self.save_visualization(true_img, true_depth_colored, out_depth_fine, out_normal_fine,
589
+ query_w2c[0], out_rgb_fine, H, W,
590
+ depth_min, depth_max, iter_step, meta, "val_lod0", true_depth=true_depth, scale_factor=scale_factor)
591
+
592
+ if self.num_lods > 1:
593
+ self.save_visualization(true_img, true_depth_colored, out_depth_fine_lod1, out_normal_fine_lod1,
594
+ query_w2c[0], out_rgb_fine_lod1, H, W,
595
+ depth_min, depth_max, iter_step, meta, "val_lod1", true_depth=true_depth, scale_factor=scale_factor)
596
+
597
+ # - extract mesh
598
+ if (iter_step % self.val_mesh_freq == 0):
599
+ torch.cuda.empty_cache()
600
+ self.validate_mesh(self.sdf_network_lod0,
601
+ self.sdf_renderer_lod0.extract_geometry,
602
+ conditional_volume=con_volume_lod0, lod=0,
603
+ threshold=0,
604
+ # occupancy_mask=con_valid_mask_volume_lod0[0, 0],
605
+ mode='val_bg', meta=meta,
606
+ iter_step=iter_step, scale_mat=scale_mat, trans_mat=trans_mat)
607
+ torch.cuda.empty_cache()
608
+
609
+ if self.num_lods > 1:
610
+ self.validate_mesh(self.sdf_network_lod1,
611
+ self.sdf_renderer_lod1.extract_geometry,
612
+ conditional_volume=con_volume_lod1, lod=1,
613
+ # occupancy_mask=con_valid_mask_volume_lod1[0, 0].detach(),
614
+ mode='val_bg', meta=meta,
615
+ iter_step=iter_step, scale_mat=scale_mat, trans_mat=trans_mat)
616
+
617
+ torch.cuda.empty_cache()
618
+
619
+
620
+
621
+ def export_mesh_step(self, sample,
622
+ perturb_overwrite=-1,
623
+ background_rgb=None,
624
+ alpha_inter_ratio_lod0=0.0,
625
+ alpha_inter_ratio_lod1=0.0,
626
+ iter_step=0,
627
+ chunk_size=512,
628
+ save_vis=False,
629
+ ):
630
+ # * only support batch_size==1
631
+ # ! attention: the list of string cannot be splited in DataParallel
632
+ batch_idx = sample['batch_idx'][0]
633
+ meta = sample['meta'][batch_idx] # the scan lighting ref_view info
634
+
635
+ sizeW = sample['img_wh'][0][0]
636
+ sizeH = sample['img_wh'][0][1]
637
+ H, W = sizeH, sizeW
638
+
639
+ partial_vol_origin = sample['partial_vol_origin'] # [B, 3]
640
+ near, far = sample['query_near_far'][0, :1], sample['query_near_far'][0, 1:]
641
+
642
+ # the ray variables
643
+ sample_rays = sample['rays']
644
+ rays_o = sample_rays['rays_o'][0]
645
+ rays_d = sample_rays['rays_v'][0]
646
+ rays_ndc_uv = sample_rays['rays_ndc_uv'][0]
647
+
648
+ imgs = sample['images'][0]
649
+ intrinsics = sample['intrinsics'][0]
650
+ intrinsics_l_4x = intrinsics.clone()
651
+ intrinsics_l_4x[:, :2] *= 0.25
652
+ w2cs = sample['w2cs'][0]
653
+ c2ws = sample['c2ws'][0]
654
+ # target_candidate_w2cs = sample['target_candidate_w2cs'][0]
655
+ proj_matrices = sample['affine_mats']
656
+
657
+
658
+ # - the image to render
659
+ scale_mat = sample['scale_mat'] # [1,4,4] used to convert mesh into true scale
660
+ trans_mat = sample['trans_mat']
661
+ query_c2w = sample['query_c2w'] # [1,4,4]
662
+ query_w2c = sample['query_w2c'] # [1,4,4]
663
+ true_img = sample['query_image'][0]
664
+ true_img = np.uint8(true_img.permute(1, 2, 0).cpu().numpy() * 255)
665
+
666
+ depth_min, depth_max = near.cpu().numpy(), far.cpu().numpy()
667
+
668
+ scale_factor = sample['scale_factor'][0].cpu().numpy()
669
+ true_depth = sample['query_depth'] if 'query_depth' in sample.keys() else None
670
+ if true_depth is not None:
671
+ true_depth = true_depth[0].cpu().numpy()
672
+ true_depth_colored = visualize_depth_numpy(true_depth, [depth_min, depth_max])[0]
673
+ else:
674
+ true_depth_colored = None
675
+
676
+ rays_o = rays_o.reshape(-1, 3).split(chunk_size)
677
+ rays_d = rays_d.reshape(-1, 3).split(chunk_size)
678
+ # import time
679
+ # jha_begin1 = time.time()
680
+ # - obtain conditional features
681
+ with torch.no_grad():
682
+ # - obtain conditional features
683
+ geometry_feature_maps = self.obtain_pyramid_feature_maps(imgs, lod=0)
684
+ # - lod 0
685
+ conditional_features_lod0 = self.sdf_network_lod0.get_conditional_volume(
686
+ feature_maps=geometry_feature_maps[None, :, :, :, :],
687
+ partial_vol_origin=partial_vol_origin,
688
+ proj_mats=proj_matrices,
689
+ sizeH=sizeH,
690
+ sizeW=sizeW,
691
+ lod=0,
692
+ )
693
+ # jha_end1 = time.time()
694
+ # print("get_conditional_volume: ", jha_end1 - jha_begin1)
695
+ # jha_begin2 = time.time()
696
+ con_volume_lod0 = conditional_features_lod0['dense_volume_scale0']
697
+ con_valid_mask_volume_lod0 = conditional_features_lod0['valid_mask_volume_scale0']
698
+ coords_lod0 = conditional_features_lod0['coords_scale0'] # [1,3,wX,wY,wZ]
699
+
700
+ if self.num_lods > 1:
701
+ sdf_volume_lod0 = self.sdf_network_lod0.get_sdf_volume(
702
+ con_volume_lod0, con_valid_mask_volume_lod0,
703
+ coords_lod0, partial_vol_origin) # [1, 1, dX, dY, dZ]
704
+
705
+ depth_maps_lod0, depth_masks_lod0 = None, None
706
+
707
+
708
+ if self.num_lods > 1:
709
+ geometry_feature_maps_lod1 = self.obtain_pyramid_feature_maps(imgs, lod=1)
710
+
711
+ if self.prune_depth_filter:
712
+ pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf_depthfilter(
713
+ sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0],
714
+ depth_maps_lod0, proj_matrices[0],
715
+ partial_vol_origin, self.sdf_network_lod0.voxel_size,
716
+ near, far, self.sdf_network_lod0.voxel_size, 12)
717
+ else:
718
+ pre_coords, pre_feats = self.sdf_renderer_lod0.get_valid_sparse_coords_by_sdf(
719
+ sdf_volume_lod0[0], coords_lod0[0], con_valid_mask_volume_lod0[0], con_volume_lod0[0])
720
+
721
+ pre_coords[:, 1:] = pre_coords[:, 1:] * 2
722
+
723
+ with torch.no_grad():
724
+ conditional_features_lod1 = self.sdf_network_lod1.get_conditional_volume(
725
+ feature_maps=geometry_feature_maps_lod1[None, :, :, :, :],
726
+ partial_vol_origin=partial_vol_origin,
727
+ proj_mats=proj_matrices,
728
+ sizeH=sizeH,
729
+ sizeW=sizeW,
730
+ pre_coords=pre_coords,
731
+ pre_feats=pre_feats,
732
+ )
733
+
734
+ con_volume_lod1 = conditional_features_lod1['dense_volume_scale1']
735
+ con_valid_mask_volume_lod1 = conditional_features_lod1['valid_mask_volume_scale1']
736
+
737
+ out_rgb_fine = []
738
+ out_normal_fine = []
739
+ out_depth_fine = []
740
+
741
+ out_rgb_fine_lod1 = []
742
+ out_normal_fine_lod1 = []
743
+ out_depth_fine_lod1 = []
744
+
745
+ # jha_end2 = time.time()
746
+ # print("interval before starting mesh export: ", jha_end2 - jha_begin2)
747
+
748
+ # - extract mesh
749
+ if (iter_step % self.val_mesh_freq == 0):
750
+ torch.cuda.empty_cache()
751
+ # jha_begin3 = time.time()
752
+ self.validate_colored_mesh(
753
+ density_or_sdf_network=self.sdf_network_lod0,
754
+ func_extract_geometry=self.sdf_renderer_lod0.extract_geometry,
755
+ conditional_volume=con_volume_lod0,
756
+ conditional_valid_mask_volume = con_valid_mask_volume_lod0,
757
+ feature_maps=geometry_feature_maps,
758
+ color_maps=imgs,
759
+ w2cs=w2cs,
760
+ target_candidate_w2cs=None,
761
+ intrinsics=intrinsics,
762
+ rendering_network=self.rendering_network_lod0,
763
+ rendering_projector=self.sdf_renderer_lod0.rendering_projector,
764
+ lod=0,
765
+ threshold=0,
766
+ query_c2w=query_c2w,
767
+ mode='val_bg', meta=meta,
768
+ iter_step=iter_step, scale_mat=scale_mat, trans_mat=trans_mat
769
+ )
770
+ torch.cuda.empty_cache()
771
+ # jha_end3 = time.time()
772
+ # print("validate_colored_mesh_test_time: ", jha_end3 - jha_begin3)
773
+
774
+ if self.num_lods > 1:
775
+ self.validate_colored_mesh(
776
+ density_or_sdf_network=self.sdf_network_lod1,
777
+ func_extract_geometry=self.sdf_renderer_lod1.extract_geometry,
778
+ conditional_volume=con_volume_lod1,
779
+ conditional_valid_mask_volume = con_valid_mask_volume_lod1,
780
+ feature_maps=geometry_feature_maps,
781
+ color_maps=imgs,
782
+ w2cs=w2cs,
783
+ target_candidate_w2cs=None,
784
+ intrinsics=intrinsics,
785
+ rendering_network=self.rendering_network_lod1,
786
+ rendering_projector=self.sdf_renderer_lod1.rendering_projector,
787
+ lod=1,
788
+ threshold=0,
789
+ query_c2w=query_c2w,
790
+ mode='val_bg', meta=meta,
791
+ iter_step=iter_step, scale_mat=scale_mat, trans_mat=trans_mat
792
+ )
793
+ torch.cuda.empty_cache()
794
+
795
+
796
+
797
+ def save_visualization(self, true_img, true_colored_depth, out_depth, out_normal, w2cs, out_color, H, W,
798
+ depth_min, depth_max, iter_step, meta, comment, out_color_mlp=[], true_depth=None, scale_factor=1.0):
799
+ if len(out_color) > 0:
800
+ img_fine = (np.concatenate(out_color, axis=0).reshape([H, W, 3]) * 256).clip(0, 255)
801
+
802
+ if len(out_color_mlp) > 0:
803
+ img_mlp = (np.concatenate(out_color_mlp, axis=0).reshape([H, W, 3]) * 256).clip(0, 255)
804
+
805
+ if len(out_normal) > 0:
806
+ normal_img = np.concatenate(out_normal, axis=0)
807
+ rot = w2cs[:3, :3].detach().cpu().numpy()
808
+ # - convert normal from world space to camera space
809
+ normal_img = (np.matmul(rot[None, :, :],
810
+ normal_img[:, :, None]).reshape([H, W, 3]) * 128 + 128).clip(0, 255)
811
+ if len(out_depth) > 0:
812
+ pred_depth = np.concatenate(out_depth, axis=0).reshape([H, W])
813
+ pred_depth_colored = visualize_depth_numpy(pred_depth, [depth_min, depth_max])[0]
814
+
815
+ if len(out_depth) > 0:
816
+ os.makedirs(os.path.join(self.base_exp_dir, 'depths_' + comment), exist_ok=True)
817
+ if true_colored_depth is not None:
818
+
819
+ if true_depth is not None:
820
+ depth_error_map = np.abs(true_depth - pred_depth) * 2.0 / scale_factor
821
+ # [256, 256, 1] -> [256, 256, 3]
822
+ depth_error_map = np.tile(depth_error_map[:, :, None], [1, 1, 3])
823
+ print("meta: ", meta)
824
+ print("scale_factor: ", scale_factor)
825
+ print("depth_error_mean: ", depth_error_map.mean())
826
+ depth_visualized = np.concatenate(
827
+ [(depth_error_map * 255).astype(np.uint8), true_colored_depth, pred_depth_colored, true_img], axis=1)[:, :, ::-1]
828
+ # print("depth_visualized.shape: ", depth_visualized.shape)
829
+ # write depth error result text on img, the input is a numpy array of [256, 1024, 3]
830
+ # cv.putText(depth_visualized.copy(), "depth_error_mean: {:.4f}".format(depth_error_map.mean()), (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
831
+ else:
832
+ depth_visualized = np.concatenate(
833
+ [true_colored_depth, pred_depth_colored, true_img])[:, :, ::-1]
834
+ cv.imwrite(
835
+ os.path.join(self.base_exp_dir, 'depths_' + comment,
836
+ '{:0>8d}_{}.png'.format(iter_step, meta)), depth_visualized
837
+ )
838
+ else:
839
+ cv.imwrite(
840
+ os.path.join(self.base_exp_dir, 'depths_' + comment,
841
+ '{:0>8d}_{}.png'.format(iter_step, meta)),
842
+ np.concatenate(
843
+ [pred_depth_colored, true_img])[:, :, ::-1])
844
+ if len(out_color) > 0:
845
+ os.makedirs(os.path.join(self.base_exp_dir, 'synthesized_color_' + comment), exist_ok=True)
846
+ cv.imwrite(os.path.join(self.base_exp_dir, 'synthesized_color_' + comment,
847
+ '{:0>8d}_{}.png'.format(iter_step, meta)),
848
+ np.concatenate(
849
+ [img_fine, true_img])[:, :, ::-1]) # bgr2rgb
850
+ # compute psnr (image pixel lie in [0, 255])
851
+ mse_loss = np.mean((img_fine - true_img) ** 2)
852
+ psnr = 10 * np.log10(255 ** 2 / mse_loss)
853
+
854
+ print("PSNR: ", psnr)
855
+
856
+ if len(out_color_mlp) > 0:
857
+ os.makedirs(os.path.join(self.base_exp_dir, 'synthesized_color_mlp_' + comment), exist_ok=True)
858
+ cv.imwrite(os.path.join(self.base_exp_dir, 'synthesized_color_mlp_' + comment,
859
+ '{:0>8d}_{}.png'.format(iter_step, meta)),
860
+ np.concatenate(
861
+ [img_mlp, true_img])[:, :, ::-1]) # bgr2rgb
862
+
863
+ if len(out_normal) > 0:
864
+ os.makedirs(os.path.join(self.base_exp_dir, 'normals_' + comment), exist_ok=True)
865
+ cv.imwrite(os.path.join(self.base_exp_dir, 'normals_' + comment,
866
+ '{:0>8d}_{}.png'.format(iter_step, meta)),
867
+ normal_img[:, :, ::-1])
868
+
869
+ def forward(self, sample,
870
+ perturb_overwrite=-1,
871
+ background_rgb=None,
872
+ alpha_inter_ratio_lod0=0.0,
873
+ alpha_inter_ratio_lod1=0.0,
874
+ iter_step=0,
875
+ mode='train',
876
+ save_vis=False,
877
+ ):
878
+
879
+ if mode == 'train':
880
+ return self.train_step(sample,
881
+ perturb_overwrite=perturb_overwrite,
882
+ background_rgb=background_rgb,
883
+ alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
884
+ alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
885
+ iter_step=iter_step
886
+ )
887
+ elif mode == 'val':
888
+ import time
889
+ begin = time.time()
890
+ result = self.val_step(sample,
891
+ perturb_overwrite=perturb_overwrite,
892
+ background_rgb=background_rgb,
893
+ alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
894
+ alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
895
+ iter_step=iter_step,
896
+ save_vis=save_vis,
897
+ )
898
+ end = time.time()
899
+ print("val_step time: ", end - begin)
900
+ return result
901
+ elif mode == 'export_mesh':
902
+ import time
903
+ begin = time.time()
904
+ result = self.export_mesh_step(sample,
905
+ perturb_overwrite=perturb_overwrite,
906
+ background_rgb=background_rgb,
907
+ alpha_inter_ratio_lod0=alpha_inter_ratio_lod0,
908
+ alpha_inter_ratio_lod1=alpha_inter_ratio_lod1,
909
+ iter_step=iter_step,
910
+ save_vis=save_vis,
911
+ )
912
+ end = time.time()
913
+ print("export mesh time: ", end - begin)
914
+ return result
915
+ def obtain_pyramid_feature_maps(self, imgs, lod=0):
916
+ """
917
+ get feature maps of all conditional images
918
+ :param imgs:
919
+ :return:
920
+ """
921
+
922
+ if lod == 0:
923
+ extractor = self.pyramid_feature_network_geometry_lod0
924
+ elif lod >= 1:
925
+ extractor = self.pyramid_feature_network_geometry_lod1
926
+
927
+ pyramid_feature_maps = extractor(imgs)
928
+
929
+ # * the pyramid features are very important, if only use the coarst features, hard to optimize
930
+ fused_feature_maps = torch.cat([
931
+ F.interpolate(pyramid_feature_maps[0], scale_factor=4, mode='bilinear', align_corners=True),
932
+ F.interpolate(pyramid_feature_maps[1], scale_factor=2, mode='bilinear', align_corners=True),
933
+ pyramid_feature_maps[2]
934
+ ], dim=1)
935
+
936
+ return fused_feature_maps
937
+
938
+ def cal_losses_sdf(self, render_out, sample_rays, iter_step=-1, lod=0):
939
+
940
+ # loss weight schedule; the regularization terms should be added in later training stage
941
+ def get_weight(iter_step, weight):
942
+ if lod == 1:
943
+ anneal_start = self.anneal_end if lod == 0 else self.anneal_end_lod1
944
+ anneal_end = self.anneal_end if lod == 0 else self.anneal_end_lod1
945
+ anneal_end = anneal_end * 2
946
+ else:
947
+ anneal_start = self.anneal_start if lod == 0 else self.anneal_start_lod1
948
+ anneal_end = self.anneal_end if lod == 0 else self.anneal_end_lod1
949
+ anneal_end = anneal_end * 2
950
+
951
+ if iter_step < 0:
952
+ return weight
953
+
954
+ if anneal_end == 0.0:
955
+ return weight
956
+ elif iter_step < anneal_start:
957
+ return 0.0
958
+ else:
959
+ return np.min(
960
+ [1.0,
961
+ (iter_step - anneal_start) / (anneal_end - anneal_start)]) * weight
962
+
963
+ rays_o = sample_rays['rays_o'][0]
964
+ rays_d = sample_rays['rays_v'][0]
965
+ true_rgb = sample_rays['rays_color'][0]
966
+
967
+ if 'rays_depth' in sample_rays.keys():
968
+ true_depth = sample_rays['rays_depth'][0]
969
+ else:
970
+ true_depth = None
971
+ mask = sample_rays['rays_mask'][0]
972
+
973
+ color_fine = render_out['color_fine']
974
+ color_fine_mask = render_out['color_fine_mask']
975
+ depth_pred = render_out['depth']
976
+
977
+ variance = render_out['variance']
978
+ cdf_fine = render_out['cdf_fine']
979
+ weight_sum = render_out['weights_sum']
980
+
981
+ gradient_error_fine = render_out['gradient_error_fine']
982
+
983
+ sdf = render_out['sdf']
984
+
985
+ # * color generated by mlp
986
+ color_mlp = render_out['color_mlp']
987
+ color_mlp_mask = render_out['color_mlp_mask']
988
+
989
+ if color_fine is not None:
990
+ # Color loss
991
+ color_mask = color_fine_mask if color_fine_mask is not None else mask
992
+ color_mask = color_mask[..., 0]
993
+ color_error = (color_fine[color_mask] - true_rgb[color_mask])
994
+ # print("Nan number", torch.isnan(color_error).sum())
995
+ # print("Color error shape", color_error.shape)
996
+ color_fine_loss = F.l1_loss(color_error, torch.zeros_like(color_error).to(color_error.device),
997
+ reduction='mean')
998
+ # print(color_fine_loss)
999
+ psnr = 20.0 * torch.log10(
1000
+ 1.0 / (((color_fine[color_mask] - true_rgb[color_mask]) ** 2).mean() / (3.0)).sqrt())
1001
+ else:
1002
+ color_fine_loss = 0.
1003
+ psnr = 0.
1004
+
1005
+ if color_mlp is not None:
1006
+ # Color loss
1007
+ color_mlp_mask = color_mlp_mask[..., 0]
1008
+ color_error_mlp = (color_mlp[color_mlp_mask] - true_rgb[color_mlp_mask])
1009
+ color_mlp_loss = F.l1_loss(color_error_mlp,
1010
+ torch.zeros_like(color_error_mlp).to(color_error_mlp.device),
1011
+ reduction='mean')
1012
+
1013
+ psnr_mlp = 20.0 * torch.log10(
1014
+ 1.0 / (((color_mlp[color_mlp_mask] - true_rgb[color_mlp_mask]) ** 2).mean() / (3.0)).sqrt())
1015
+ else:
1016
+ color_mlp_loss = 0.
1017
+ psnr_mlp = 0.
1018
+
1019
+ # depth loss is only used for inference, not included in total loss
1020
+ if true_depth is not None:
1021
+ # depth_loss = self.depth_criterion(depth_pred, true_depth, mask)
1022
+ depth_loss = self.depth_criterion(depth_pred, true_depth)
1023
+
1024
+ # # depth evaluation
1025
+ # depth_statis = compute_depth_errors(depth_pred.detach().cpu().numpy(), true_depth.cpu().numpy())
1026
+ # depth_statis = numpy2tensor(depth_statis, device=rays_o.device)
1027
+ depth_statis = None
1028
+ else:
1029
+ depth_loss = 0.
1030
+ depth_statis = None
1031
+
1032
+ sparse_loss_1 = torch.exp(
1033
+ -1 * torch.abs(render_out['sdf_random']) * self.sdf_decay_param).mean() # - should equal
1034
+ sparse_loss_2 = torch.exp(-1 * torch.abs(sdf) * self.sdf_decay_param).mean()
1035
+ sparse_loss = (sparse_loss_1 + sparse_loss_2) / 2
1036
+
1037
+ sdf_mean = torch.abs(sdf).mean()
1038
+ sparseness_1 = (torch.abs(sdf) < 0.01).to(torch.float32).mean()
1039
+ sparseness_2 = (torch.abs(sdf) < 0.02).to(torch.float32).mean()
1040
+
1041
+ # Eikonal loss
1042
+ gradient_error_loss = gradient_error_fine
1043
+
1044
+ # ! the first 50k, don't use bg constraint
1045
+ fg_bg_weight = 0.0 if iter_step < 50000 else get_weight(iter_step, self.fg_bg_weight)
1046
+
1047
+ # Mask loss, optional
1048
+ # The images of DTU dataset contain large black regions (0 rgb values),
1049
+ # can use this data prior to make fg more clean
1050
+ background_loss = 0.0
1051
+ fg_bg_loss = 0.0
1052
+ if self.fg_bg_weight > 0 and torch.mean((mask < 0.5).to(torch.float32)) > 0.02:
1053
+ weights_sum_fg = render_out['weights_sum_fg']
1054
+ fg_bg_error = (weights_sum_fg - mask)[mask < 0.5]
1055
+ fg_bg_loss = F.l1_loss(fg_bg_error,
1056
+ torch.zeros_like(fg_bg_error).to(fg_bg_error.device),
1057
+ reduction='mean')
1058
+
1059
+
1060
+
1061
+ loss = 1.0 * depth_loss + color_fine_loss + color_mlp_loss + \
1062
+ sparse_loss * get_weight(iter_step, self.sdf_sparse_weight) + \
1063
+ fg_bg_loss * fg_bg_weight + \
1064
+ gradient_error_loss * self.sdf_igr_weight # ! gradient_error_loss need a mask
1065
+
1066
+ losses = {
1067
+ "loss": loss,
1068
+ "depth_loss": depth_loss,
1069
+ "color_fine_loss": color_fine_loss,
1070
+ "color_mlp_loss": color_mlp_loss,
1071
+ "gradient_error_loss": gradient_error_loss,
1072
+ "background_loss": background_loss,
1073
+ "sparse_loss": sparse_loss,
1074
+ "sparseness_1": sparseness_1,
1075
+ "sparseness_2": sparseness_2,
1076
+ "sdf_mean": sdf_mean,
1077
+ "psnr": psnr,
1078
+ "psnr_mlp": psnr_mlp,
1079
+ "weights_sum": render_out['weights_sum'],
1080
+ "weights_sum_fg": render_out['weights_sum_fg'],
1081
+ "alpha_sum": render_out['alpha_sum'],
1082
+ "variance": render_out['variance'],
1083
+ "sparse_weight": get_weight(iter_step, self.sdf_sparse_weight),
1084
+ "fg_bg_weight": fg_bg_weight,
1085
+ "fg_bg_loss": fg_bg_loss, # added by jha, bug of sparseNeuS
1086
+ }
1087
+ losses = torch.tensor(losses, device=rays_o.device)
1088
+ return loss, losses, depth_statis
1089
+
1090
+ @torch.no_grad()
1091
+ def validate_mesh(self, density_or_sdf_network, func_extract_geometry, world_space=True, resolution=360,
1092
+ threshold=0.0, mode='val',
1093
+ # * 3d feature volume
1094
+ conditional_volume=None, lod=None, occupancy_mask=None,
1095
+ bound_min=[-1, -1, -1], bound_max=[1, 1, 1], meta='', iter_step=0, scale_mat=None,
1096
+ trans_mat=None
1097
+ ):
1098
+
1099
+ bound_min = torch.tensor(bound_min, dtype=torch.float32)
1100
+ bound_max = torch.tensor(bound_max, dtype=torch.float32)
1101
+
1102
+ vertices, triangles, fields = func_extract_geometry(
1103
+ density_or_sdf_network,
1104
+ bound_min, bound_max, resolution=resolution,
1105
+ threshold=threshold, device=conditional_volume.device,
1106
+ # * 3d feature volume
1107
+ conditional_volume=conditional_volume, lod=lod,
1108
+ occupancy_mask=occupancy_mask
1109
+ )
1110
+
1111
+
1112
+ if scale_mat is not None:
1113
+ scale_mat_np = scale_mat.cpu().numpy()
1114
+ vertices = vertices * scale_mat_np[0][0, 0] + scale_mat_np[0][:3, 3][None]
1115
+
1116
+ if trans_mat is not None: # w2c_ref_inv
1117
+ trans_mat_np = trans_mat.cpu().numpy()
1118
+ vertices_homo = np.concatenate([vertices, np.ones_like(vertices[:, :1])], axis=1)
1119
+ vertices = np.matmul(trans_mat_np, vertices_homo[:, :, None])[:, :3, 0]
1120
+
1121
+ mesh = trimesh.Trimesh(vertices, triangles)
1122
+ os.makedirs(os.path.join(self.base_exp_dir, 'meshes_' + mode), exist_ok=True)
1123
+ mesh.export(os.path.join(self.base_exp_dir, 'meshes_' + mode,
1124
+ 'mesh_{:0>8d}_{}_lod{:0>1d}.ply'.format(iter_step, meta, lod)))
1125
+
1126
+
1127
+
1128
+ def validate_colored_mesh(self, density_or_sdf_network, func_extract_geometry, world_space=True, resolution=360,
1129
+ threshold=0.0, mode='val',
1130
+ # * 3d feature volume
1131
+ conditional_volume=None,
1132
+ conditional_valid_mask_volume=None,
1133
+ feature_maps=None,
1134
+ color_maps = None,
1135
+ w2cs=None,
1136
+ target_candidate_w2cs=None,
1137
+ intrinsics=None,
1138
+ rendering_network=None,
1139
+ rendering_projector=None,
1140
+ query_c2w=None,
1141
+ lod=None, occupancy_mask=None,
1142
+ bound_min=[-1, -1, -1], bound_max=[1, 1, 1], meta='', iter_step=0, scale_mat=None,
1143
+ trans_mat=None
1144
+ ):
1145
+
1146
+ bound_min = torch.tensor(bound_min, dtype=torch.float32)
1147
+ bound_max = torch.tensor(bound_max, dtype=torch.float32)
1148
+ # import time
1149
+ # jha_begin4 = time.time()
1150
+ vertices, triangles, fields = func_extract_geometry(
1151
+ density_or_sdf_network,
1152
+ bound_min, bound_max, resolution=resolution,
1153
+ threshold=threshold, device=conditional_volume.device,
1154
+ # * 3d feature volume
1155
+ conditional_volume=conditional_volume, lod=lod,
1156
+ occupancy_mask=occupancy_mask
1157
+ )
1158
+ # jha_end4 = time.time()
1159
+ # print("[TEST]: func_extract_geometry time", jha_end4 - jha_begin4)
1160
+
1161
+ # import time
1162
+ # jha_begin5 = time.time()
1163
+
1164
+
1165
+ with torch.no_grad():
1166
+ ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask, _, _ = rendering_projector.compute_view_independent(
1167
+ torch.tensor(vertices).to(conditional_volume),
1168
+ lod=lod, # JHA EDITED
1169
+ # * 3d geometry feature volumes
1170
+ geometryVolume=conditional_volume[0],
1171
+ geometryVolumeMask=conditional_valid_mask_volume[0],
1172
+ sdf_network=density_or_sdf_network,
1173
+ # * 2d rendering feature maps
1174
+ rendering_feature_maps=feature_maps, # [n_view, 56, 256, 256]
1175
+ color_maps=color_maps,
1176
+ w2cs=w2cs,
1177
+ target_candidate_w2cs=target_candidate_w2cs,
1178
+ intrinsics=intrinsics,
1179
+ img_wh=[256,256],
1180
+ query_img_idx=0, # the index of the N_views dim for rendering
1181
+ query_c2w=query_c2w,
1182
+ )
1183
+
1184
+
1185
+ vertices_color, rendering_valid_mask = rendering_network(
1186
+ ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask)
1187
+
1188
+ # jha_end5 = time.time()
1189
+ # print("[TEST]: rendering_network time", jha_end5 - jha_begin5)
1190
+
1191
+ if scale_mat is not None:
1192
+ scale_mat_np = scale_mat.cpu().numpy()
1193
+ vertices = vertices * scale_mat_np[0][0, 0] + scale_mat_np[0][:3, 3][None]
1194
+
1195
+ if trans_mat is not None: # w2c_ref_inv
1196
+ trans_mat_np = trans_mat.cpu().numpy()
1197
+ vertices_homo = np.concatenate([vertices, np.ones_like(vertices[:, :1])], axis=1)
1198
+ vertices = np.matmul(trans_mat_np, vertices_homo[:, :, None])[:, :3, 0]
1199
+
1200
+ vertices_color = np.array(vertices_color.squeeze(0).cpu() * 255, dtype=np.uint8)
1201
+ mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=vertices_color)
1202
+ os.makedirs(os.path.join(self.base_exp_dir, 'meshes_' + mode, 'lod{:0>1d}'.format(lod)), exist_ok=True)
1203
+ # mesh.export(os.path.join(self.base_exp_dir, 'meshes_' + mode, 'lod{:0>1d}'.format(lod),
1204
+ # 'mesh_{:0>8d}_{}_lod{:0>1d}.ply'.format(iter_step, meta, lod)))
1205
+ # MODIFIED
1206
+ mesh.export(os.path.join(self.base_exp_dir, 'meshes_' + mode, 'lod{:0>1d}'.format(lod),
1207
+ 'mesh_{:0>8d}_gradio_lod{:0>1d}.ply'.format(iter_step, lod)))
SparseNeuS_demo_v1/ops/__init__.py ADDED
File without changes
SparseNeuS_demo_v1/ops/back_project.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn.functional import grid_sample
3
+
4
+
5
+ def back_project_sparse_type(coords, origin, voxel_size, feats, KRcam, sizeH=None, sizeW=None, only_mask=False,
6
+ with_proj_z=False):
7
+ # - modified version from NeuRecon
8
+ '''
9
+ Unproject the image fetures to form a 3D (sparse) feature volume
10
+
11
+ :param coords: coordinates of voxels,
12
+ dim: (num of voxels, 4) (4 : batch ind, x, y, z)
13
+ :param origin: origin of the partial voxel volume (xyz position of voxel (0, 0, 0))
14
+ dim: (batch size, 3) (3: x, y, z)
15
+ :param voxel_size: floats specifying the size of a voxel
16
+ :param feats: image features
17
+ dim: (num of views, batch size, C, H, W)
18
+ :param KRcam: projection matrix
19
+ dim: (num of views, batch size, 4, 4)
20
+ :return: feature_volume_all: 3D feature volumes
21
+ dim: (num of voxels, num_of_views, c)
22
+ :return: mask_volume_all: indicate the voxel of sampled feature volume is valid or not
23
+ dim: (num of voxels, num_of_views)
24
+ '''
25
+ n_views, bs, c, h, w = feats.shape
26
+ device = feats.device
27
+
28
+ if sizeH is None:
29
+ sizeH, sizeW = h, w # - if the KRcam is not suitable for the current feats
30
+
31
+ feature_volume_all = torch.zeros(coords.shape[0], n_views, c).to(device)
32
+ mask_volume_all = torch.zeros([coords.shape[0], n_views], dtype=torch.int32).to(device)
33
+ # import ipdb; ipdb.set_trace()
34
+ for batch in range(bs):
35
+ # import ipdb; ipdb.set_trace()
36
+ batch_ind = torch.nonzero(coords[:, 0] == batch).squeeze(1)
37
+ coords_batch = coords[batch_ind][:, 1:]
38
+
39
+ coords_batch = coords_batch.view(-1, 3)
40
+ origin_batch = origin[batch].unsqueeze(0)
41
+ feats_batch = feats[:, batch]
42
+ proj_batch = KRcam[:, batch]
43
+
44
+ grid_batch = coords_batch * voxel_size + origin_batch.float()
45
+ rs_grid = grid_batch.unsqueeze(0).expand(n_views, -1, -1)
46
+ rs_grid = rs_grid.permute(0, 2, 1).contiguous()
47
+ nV = rs_grid.shape[-1]
48
+ rs_grid = torch.cat([rs_grid, torch.ones([n_views, 1, nV]).to(device)], dim=1)
49
+
50
+ # Project grid
51
+ im_p = proj_batch @ rs_grid # - transform world pts to image UV space
52
+ im_x, im_y, im_z = im_p[:, 0], im_p[:, 1], im_p[:, 2]
53
+
54
+ im_z[im_z >= 0] = im_z[im_z >= 0].clamp(min=1e-6)
55
+
56
+ im_x = im_x / im_z
57
+ im_y = im_y / im_z
58
+
59
+ im_grid = torch.stack([2 * im_x / (sizeW - 1) - 1, 2 * im_y / (sizeH - 1) - 1], dim=-1)
60
+ mask = im_grid.abs() <= 1
61
+ mask = (mask.sum(dim=-1) == 2) & (im_z > 0)
62
+
63
+ mask = mask.view(n_views, -1)
64
+ mask = mask.permute(1, 0).contiguous() # [num_pts, nviews]
65
+
66
+ mask_volume_all[batch_ind] = mask.to(torch.int32)
67
+
68
+ if only_mask:
69
+ return mask_volume_all
70
+
71
+ feats_batch = feats_batch.view(n_views, c, h, w)
72
+ im_grid = im_grid.view(n_views, 1, -1, 2)
73
+ features = grid_sample(feats_batch, im_grid, padding_mode='zeros', align_corners=True)
74
+ # if features.isnan().sum() > 0:
75
+ # import ipdb; ipdb.set_trace()
76
+ features = features.view(n_views, c, -1)
77
+ features = features.permute(2, 0, 1).contiguous() # [num_pts, nviews, c]
78
+
79
+ feature_volume_all[batch_ind] = features
80
+
81
+ if with_proj_z:
82
+ im_z = im_z.view(n_views, 1, -1).permute(2, 0, 1).contiguous() # [num_pts, nviews, 1]
83
+ return feature_volume_all, mask_volume_all, im_z
84
+ # if feature_volume_all.isnan().sum() > 0:
85
+ # import ipdb; ipdb.set_trace()
86
+ return feature_volume_all, mask_volume_all
87
+
88
+
89
+ def cam2pixel(cam_coords, proj_c2p_rot, proj_c2p_tr, padding_mode, sizeH=None, sizeW=None, with_depth=False):
90
+ """Transform coordinates in the camera frame to the pixel frame.
91
+ Args:
92
+ cam_coords: pixel coordinates defined in the first camera coordinates system -- [B, 3, H, W]
93
+ proj_c2p_rot: rotation matrix of cameras -- [B, 3, 3]
94
+ proj_c2p_tr: translation vectors of cameras -- [B, 3, 1]
95
+ Returns:
96
+ array of [-1,1] coordinates -- [B, H, W, 2]
97
+ """
98
+ b, _, h, w = cam_coords.size()
99
+ if sizeH is None:
100
+ sizeH = h
101
+ sizeW = w
102
+
103
+ cam_coords_flat = cam_coords.view(b, 3, -1) # [B, 3, H*W]
104
+ if proj_c2p_rot is not None:
105
+ pcoords = proj_c2p_rot.bmm(cam_coords_flat)
106
+ else:
107
+ pcoords = cam_coords_flat
108
+
109
+ if proj_c2p_tr is not None:
110
+ pcoords = pcoords + proj_c2p_tr # [B, 3, H*W]
111
+ X = pcoords[:, 0]
112
+ Y = pcoords[:, 1]
113
+ Z = pcoords[:, 2].clamp(min=1e-3)
114
+
115
+ X_norm = 2 * (X / Z) / (sizeW - 1) - 1 # Normalized, -1 if on extreme left,
116
+ # 1 if on extreme right (x = w-1) [B, H*W]
117
+ Y_norm = 2 * (Y / Z) / (sizeH - 1) - 1 # Idem [B, H*W]
118
+ if padding_mode == 'zeros':
119
+ X_mask = ((X_norm > 1) + (X_norm < -1)).detach()
120
+ X_norm[X_mask] = 2 # make sure that no point in warped image is a combinaison of im and gray
121
+ Y_mask = ((Y_norm > 1) + (Y_norm < -1)).detach()
122
+ Y_norm[Y_mask] = 2
123
+
124
+ if with_depth:
125
+ pixel_coords = torch.stack([X_norm, Y_norm, Z], dim=2) # [B, H*W, 3]
126
+ return pixel_coords.view(b, h, w, 3)
127
+ else:
128
+ pixel_coords = torch.stack([X_norm, Y_norm], dim=2) # [B, H*W, 2]
129
+ return pixel_coords.view(b, h, w, 2)
130
+
131
+
132
+ # * have already checked, should check whether proj_matrix is for right coordinate system and resolution
133
+ def back_project_dense_type(coords, origin, voxel_size, feats, proj_matrix, sizeH=None, sizeW=None):
134
+ '''
135
+ Unproject the image fetures to form a 3D (dense) feature volume
136
+
137
+ :param coords: coordinates of voxels,
138
+ dim: (batch, nviews, 3, X,Y,Z)
139
+ :param origin: origin of the partial voxel volume (xyz position of voxel (0, 0, 0))
140
+ dim: (batch size, 3) (3: x, y, z)
141
+ :param voxel_size: floats specifying the size of a voxel
142
+ :param feats: image features
143
+ dim: (batch size, num of views, C, H, W)
144
+ :param proj_matrix: projection matrix
145
+ dim: (batch size, num of views, 4, 4)
146
+ :return: feature_volume_all: 3D feature volumes
147
+ dim: (batch, nviews, C, X,Y,Z)
148
+ :return: count: number of times each voxel can be seen
149
+ dim: (batch, nviews, 1, X,Y,Z)
150
+ '''
151
+
152
+ batch, nviews, _, wX, wY, wZ = coords.shape
153
+
154
+ if sizeH is None:
155
+ sizeH, sizeW = feats.shape[-2:]
156
+ proj_matrix = proj_matrix.view(batch * nviews, *proj_matrix.shape[2:])
157
+
158
+ coords_wrd = coords * voxel_size + origin.view(batch, 1, 3, 1, 1, 1)
159
+ coords_wrd = coords_wrd.view(batch * nviews, 3, wX * wY * wZ, 1) # (b*nviews,3,wX*wY*wZ, 1)
160
+
161
+ pixel_grids = cam2pixel(coords_wrd, proj_matrix[:, :3, :3], proj_matrix[:, :3, 3:],
162
+ 'zeros', sizeH=sizeH, sizeW=sizeW) # (b*nviews,wX*wY*wZ, 2)
163
+ pixel_grids = pixel_grids.view(batch * nviews, 1, wX * wY * wZ, 2)
164
+
165
+ feats = feats.view(batch * nviews, *feats.shape[2:]) # (b*nviews,c,h,w)
166
+
167
+ ones = torch.ones((batch * nviews, 1, *feats.shape[2:])).to(feats.dtype).to(feats.device)
168
+
169
+ features_volume = torch.nn.functional.grid_sample(feats, pixel_grids, padding_mode='zeros', align_corners=True)
170
+ counts_volume = torch.nn.functional.grid_sample(ones, pixel_grids, padding_mode='zeros', align_corners=True)
171
+
172
+ features_volume = features_volume.view(batch, nviews, -1, wX, wY, wZ) # (batch, nviews, C, X,Y,Z)
173
+ counts_volume = counts_volume.view(batch, nviews, -1, wX, wY, wZ)
174
+ return features_volume, counts_volume
175
+
SparseNeuS_demo_v1/ops/generate_grids.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def generate_grid(n_vox, interval):
5
+ """
6
+ generate grid
7
+ if 3D volume, grid[:,:,x,y,z] = (x,y,z)
8
+ :param n_vox:
9
+ :param interval:
10
+ :return:
11
+ """
12
+ with torch.no_grad():
13
+ # Create voxel grid
14
+ grid_range = [torch.arange(0, n_vox[axis], interval) for axis in range(3)]
15
+ grid = torch.stack(torch.meshgrid(grid_range[0], grid_range[1], grid_range[2], indexing="ij")) # 3 dx dy dz
16
+ # ! don't create tensor on gpu; imbalanced gpu memory in ddp mode
17
+ grid = grid.unsqueeze(0).type(torch.float32) # 1 3 dx dy dz
18
+
19
+ return grid
20
+
21
+
22
+ if __name__ == "__main__":
23
+ import torch.nn.functional as F
24
+ grid = generate_grid([5, 6, 8], 1)
25
+
26
+ pts = 2 * torch.tensor([1, 2, 3]) / (torch.tensor([5, 6, 8]) - 1) - 1
27
+ pts = pts.view(1, 1, 1, 1, 3)
28
+
29
+ pts = torch.flip(pts, dims=[-1])
30
+
31
+ sampled = F.grid_sample(grid, pts, mode='nearest')
32
+
33
+ print(sampled)
SparseNeuS_demo_v1/ops/grid_sampler.py ADDED
@@ -0,0 +1,467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ pytorch grid_sample doesn't support second-order derivative
3
+ implement custom version
4
+ """
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ import numpy as np
9
+
10
+
11
+ def grid_sample_2d(image, optical):
12
+ N, C, IH, IW = image.shape
13
+ _, H, W, _ = optical.shape
14
+
15
+ ix = optical[..., 0]
16
+ iy = optical[..., 1]
17
+
18
+ ix = ((ix + 1) / 2) * (IW - 1);
19
+ iy = ((iy + 1) / 2) * (IH - 1);
20
+ with torch.no_grad():
21
+ ix_nw = torch.floor(ix);
22
+ iy_nw = torch.floor(iy);
23
+ ix_ne = ix_nw + 1;
24
+ iy_ne = iy_nw;
25
+ ix_sw = ix_nw;
26
+ iy_sw = iy_nw + 1;
27
+ ix_se = ix_nw + 1;
28
+ iy_se = iy_nw + 1;
29
+
30
+ nw = (ix_se - ix) * (iy_se - iy)
31
+ ne = (ix - ix_sw) * (iy_sw - iy)
32
+ sw = (ix_ne - ix) * (iy - iy_ne)
33
+ se = (ix - ix_nw) * (iy - iy_nw)
34
+
35
+ with torch.no_grad():
36
+ torch.clamp(ix_nw, 0, IW - 1, out=ix_nw)
37
+ torch.clamp(iy_nw, 0, IH - 1, out=iy_nw)
38
+
39
+ torch.clamp(ix_ne, 0, IW - 1, out=ix_ne)
40
+ torch.clamp(iy_ne, 0, IH - 1, out=iy_ne)
41
+
42
+ torch.clamp(ix_sw, 0, IW - 1, out=ix_sw)
43
+ torch.clamp(iy_sw, 0, IH - 1, out=iy_sw)
44
+
45
+ torch.clamp(ix_se, 0, IW - 1, out=ix_se)
46
+ torch.clamp(iy_se, 0, IH - 1, out=iy_se)
47
+
48
+ image = image.view(N, C, IH * IW)
49
+
50
+ nw_val = torch.gather(image, 2, (iy_nw * IW + ix_nw).long().view(N, 1, H * W).repeat(1, C, 1))
51
+ ne_val = torch.gather(image, 2, (iy_ne * IW + ix_ne).long().view(N, 1, H * W).repeat(1, C, 1))
52
+ sw_val = torch.gather(image, 2, (iy_sw * IW + ix_sw).long().view(N, 1, H * W).repeat(1, C, 1))
53
+ se_val = torch.gather(image, 2, (iy_se * IW + ix_se).long().view(N, 1, H * W).repeat(1, C, 1))
54
+
55
+ out_val = (nw_val.view(N, C, H, W) * nw.view(N, 1, H, W) +
56
+ ne_val.view(N, C, H, W) * ne.view(N, 1, H, W) +
57
+ sw_val.view(N, C, H, W) * sw.view(N, 1, H, W) +
58
+ se_val.view(N, C, H, W) * se.view(N, 1, H, W))
59
+
60
+ return out_val
61
+
62
+
63
+ # - checked for correctness
64
+ def grid_sample_3d(volume, optical):
65
+ """
66
+ bilinear sampling cannot guarantee continuous first-order gradient
67
+ mimic pytorch grid_sample function
68
+ The 8 corner points of a volume noted as: 4 points (front view); 4 points (back view)
69
+ fnw (front north west) point
70
+ bse (back south east) point
71
+ :param volume: [B, C, X, Y, Z]
72
+ :param optical: [B, x, y, z, 3]
73
+ :return:
74
+ """
75
+ N, C, ID, IH, IW = volume.shape
76
+ _, D, H, W, _ = optical.shape
77
+
78
+ ix = optical[..., 0]
79
+ iy = optical[..., 1]
80
+ iz = optical[..., 2]
81
+
82
+ ix = ((ix + 1) / 2) * (IW - 1)
83
+ iy = ((iy + 1) / 2) * (IH - 1)
84
+ iz = ((iz + 1) / 2) * (ID - 1)
85
+
86
+ mask_x = (ix > 0) & (ix < IW)
87
+ mask_y = (iy > 0) & (iy < IH)
88
+ mask_z = (iz > 0) & (iz < ID)
89
+
90
+ mask = mask_x & mask_y & mask_z # [B, x, y, z]
91
+ mask = mask[:, None, :, :, :].repeat(1, C, 1, 1, 1) # [B, C, x, y, z]
92
+
93
+ with torch.no_grad():
94
+ # back north west
95
+ ix_bnw = torch.floor(ix)
96
+ iy_bnw = torch.floor(iy)
97
+ iz_bnw = torch.floor(iz)
98
+
99
+ ix_bne = ix_bnw + 1
100
+ iy_bne = iy_bnw
101
+ iz_bne = iz_bnw
102
+
103
+ ix_bsw = ix_bnw
104
+ iy_bsw = iy_bnw + 1
105
+ iz_bsw = iz_bnw
106
+
107
+ ix_bse = ix_bnw + 1
108
+ iy_bse = iy_bnw + 1
109
+ iz_bse = iz_bnw
110
+
111
+ # front view
112
+ ix_fnw = ix_bnw
113
+ iy_fnw = iy_bnw
114
+ iz_fnw = iz_bnw + 1
115
+
116
+ ix_fne = ix_bnw + 1
117
+ iy_fne = iy_bnw
118
+ iz_fne = iz_bnw + 1
119
+
120
+ ix_fsw = ix_bnw
121
+ iy_fsw = iy_bnw + 1
122
+ iz_fsw = iz_bnw + 1
123
+
124
+ ix_fse = ix_bnw + 1
125
+ iy_fse = iy_bnw + 1
126
+ iz_fse = iz_bnw + 1
127
+
128
+ # back view
129
+ bnw = (ix_fse - ix) * (iy_fse - iy) * (iz_fse - iz) # smaller volume, larger weight
130
+ bne = (ix - ix_fsw) * (iy_fsw - iy) * (iz_fsw - iz)
131
+ bsw = (ix_fne - ix) * (iy - iy_fne) * (iz_fne - iz)
132
+ bse = (ix - ix_fnw) * (iy - iy_fnw) * (iz_fnw - iz)
133
+
134
+ # front view
135
+ fnw = (ix_bse - ix) * (iy_bse - iy) * (iz - iz_bse) # smaller volume, larger weight
136
+ fne = (ix - ix_bsw) * (iy_bsw - iy) * (iz - iz_bsw)
137
+ fsw = (ix_bne - ix) * (iy - iy_bne) * (iz - iz_bne)
138
+ fse = (ix - ix_bnw) * (iy - iy_bnw) * (iz - iz_bnw)
139
+
140
+ with torch.no_grad():
141
+ # back view
142
+ torch.clamp(ix_bnw, 0, IW - 1, out=ix_bnw)
143
+ torch.clamp(iy_bnw, 0, IH - 1, out=iy_bnw)
144
+ torch.clamp(iz_bnw, 0, ID - 1, out=iz_bnw)
145
+
146
+ torch.clamp(ix_bne, 0, IW - 1, out=ix_bne)
147
+ torch.clamp(iy_bne, 0, IH - 1, out=iy_bne)
148
+ torch.clamp(iz_bne, 0, ID - 1, out=iz_bne)
149
+
150
+ torch.clamp(ix_bsw, 0, IW - 1, out=ix_bsw)
151
+ torch.clamp(iy_bsw, 0, IH - 1, out=iy_bsw)
152
+ torch.clamp(iz_bsw, 0, ID - 1, out=iz_bsw)
153
+
154
+ torch.clamp(ix_bse, 0, IW - 1, out=ix_bse)
155
+ torch.clamp(iy_bse, 0, IH - 1, out=iy_bse)
156
+ torch.clamp(iz_bse, 0, ID - 1, out=iz_bse)
157
+
158
+ # front view
159
+ torch.clamp(ix_fnw, 0, IW - 1, out=ix_fnw)
160
+ torch.clamp(iy_fnw, 0, IH - 1, out=iy_fnw)
161
+ torch.clamp(iz_fnw, 0, ID - 1, out=iz_fnw)
162
+
163
+ torch.clamp(ix_fne, 0, IW - 1, out=ix_fne)
164
+ torch.clamp(iy_fne, 0, IH - 1, out=iy_fne)
165
+ torch.clamp(iz_fne, 0, ID - 1, out=iz_fne)
166
+
167
+ torch.clamp(ix_fsw, 0, IW - 1, out=ix_fsw)
168
+ torch.clamp(iy_fsw, 0, IH - 1, out=iy_fsw)
169
+ torch.clamp(iz_fsw, 0, ID - 1, out=iz_fsw)
170
+
171
+ torch.clamp(ix_fse, 0, IW - 1, out=ix_fse)
172
+ torch.clamp(iy_fse, 0, IH - 1, out=iy_fse)
173
+ torch.clamp(iz_fse, 0, ID - 1, out=iz_fse)
174
+
175
+ # xxx = volume[:, :, iz_bnw.long(), iy_bnw.long(), ix_bnw.long()]
176
+ volume = volume.view(N, C, ID * IH * IW)
177
+ # yyy = volume[:, :, (iz_bnw * ID + iy_bnw * IW + ix_bnw).long()]
178
+
179
+ # back view
180
+ bnw_val = torch.gather(volume, 2,
181
+ (iz_bnw * ID ** 2 + iy_bnw * IW + ix_bnw).long().view(N, 1, D * H * W).repeat(1, C, 1))
182
+ bne_val = torch.gather(volume, 2,
183
+ (iz_bne * ID ** 2 + iy_bne * IW + ix_bne).long().view(N, 1, D * H * W).repeat(1, C, 1))
184
+ bsw_val = torch.gather(volume, 2,
185
+ (iz_bsw * ID ** 2 + iy_bsw * IW + ix_bsw).long().view(N, 1, D * H * W).repeat(1, C, 1))
186
+ bse_val = torch.gather(volume, 2,
187
+ (iz_bse * ID ** 2 + iy_bse * IW + ix_bse).long().view(N, 1, D * H * W).repeat(1, C, 1))
188
+
189
+ # front view
190
+ fnw_val = torch.gather(volume, 2,
191
+ (iz_fnw * ID ** 2 + iy_fnw * IW + ix_fnw).long().view(N, 1, D * H * W).repeat(1, C, 1))
192
+ fne_val = torch.gather(volume, 2,
193
+ (iz_fne * ID ** 2 + iy_fne * IW + ix_fne).long().view(N, 1, D * H * W).repeat(1, C, 1))
194
+ fsw_val = torch.gather(volume, 2,
195
+ (iz_fsw * ID ** 2 + iy_fsw * IW + ix_fsw).long().view(N, 1, D * H * W).repeat(1, C, 1))
196
+ fse_val = torch.gather(volume, 2,
197
+ (iz_fse * ID ** 2 + iy_fse * IW + ix_fse).long().view(N, 1, D * H * W).repeat(1, C, 1))
198
+
199
+ out_val = (
200
+ # back
201
+ bnw_val.view(N, C, D, H, W) * bnw.view(N, 1, D, H, W) +
202
+ bne_val.view(N, C, D, H, W) * bne.view(N, 1, D, H, W) +
203
+ bsw_val.view(N, C, D, H, W) * bsw.view(N, 1, D, H, W) +
204
+ bse_val.view(N, C, D, H, W) * bse.view(N, 1, D, H, W) +
205
+ # front
206
+ fnw_val.view(N, C, D, H, W) * fnw.view(N, 1, D, H, W) +
207
+ fne_val.view(N, C, D, H, W) * fne.view(N, 1, D, H, W) +
208
+ fsw_val.view(N, C, D, H, W) * fsw.view(N, 1, D, H, W) +
209
+ fse_val.view(N, C, D, H, W) * fse.view(N, 1, D, H, W)
210
+
211
+ )
212
+
213
+ # * zero padding
214
+ out_val = torch.where(mask, out_val, torch.zeros_like(out_val).float().to(out_val.device))
215
+
216
+ return out_val
217
+
218
+
219
+ # Interpolation kernel
220
+ def get_weight(s, a=-0.5):
221
+ mask_0 = (torch.abs(s) >= 0) & (torch.abs(s) <= 1)
222
+ mask_1 = (torch.abs(s) > 1) & (torch.abs(s) <= 2)
223
+ mask_2 = torch.abs(s) > 2
224
+
225
+ weight = torch.zeros_like(s).to(s.device)
226
+ weight = torch.where(mask_0, (a + 2) * (torch.abs(s) ** 3) - (a + 3) * (torch.abs(s) ** 2) + 1, weight)
227
+ weight = torch.where(mask_1,
228
+ a * (torch.abs(s) ** 3) - (5 * a) * (torch.abs(s) ** 2) + (8 * a) * torch.abs(s) - 4 * a,
229
+ weight)
230
+
231
+ # if (torch.abs(s) >= 0) & (torch.abs(s) <= 1):
232
+ # return (a + 2) * (torch.abs(s) ** 3) - (a + 3) * (torch.abs(s) ** 2) + 1
233
+ #
234
+ # elif (torch.abs(s) > 1) & (torch.abs(s) <= 2):
235
+ # return a * (torch.abs(s) ** 3) - (5 * a) * (torch.abs(s) ** 2) + (8 * a) * torch.abs(s) - 4 * a
236
+ # return 0
237
+
238
+ return weight
239
+
240
+
241
+ def cubic_interpolate(p, x):
242
+ """
243
+ one dimensional cubic interpolation
244
+ :param p: [N, 4] (4) should be in order
245
+ :param x: [N]
246
+ :return:
247
+ """
248
+ return p[:, 1] + 0.5 * x * (p[:, 2] - p[:, 0] + x * (
249
+ 2.0 * p[:, 0] - 5.0 * p[:, 1] + 4.0 * p[:, 2] - p[:, 3] + x * (
250
+ 3.0 * (p[:, 1] - p[:, 2]) + p[:, 3] - p[:, 0])))
251
+
252
+
253
+ def bicubic_interpolate(p, x, y, if_batch=True):
254
+ """
255
+ two dimensional cubic interpolation
256
+ :param p: [N, 4, 4]
257
+ :param x: [N]
258
+ :param y: [N]
259
+ :return:
260
+ """
261
+ num = p.shape[0]
262
+
263
+ if not if_batch:
264
+ arr0 = cubic_interpolate(p[:, 0, :], x) # [N]
265
+ arr1 = cubic_interpolate(p[:, 1, :], x)
266
+ arr2 = cubic_interpolate(p[:, 2, :], x)
267
+ arr3 = cubic_interpolate(p[:, 3, :], x)
268
+ return cubic_interpolate(torch.stack([arr0, arr1, arr2, arr3], dim=-1), y) # [N]
269
+ else:
270
+ x = x[:, None].repeat(1, 4).view(-1)
271
+ p = p.contiguous().view(num * 4, 4)
272
+ arr = cubic_interpolate(p, x)
273
+ arr = arr.view(num, 4)
274
+
275
+ return cubic_interpolate(arr, y)
276
+
277
+
278
+ def tricubic_interpolate(p, x, y, z):
279
+ """
280
+ three dimensional cubic interpolation
281
+ :param p: [N,4,4,4]
282
+ :param x: [N]
283
+ :param y: [N]
284
+ :param z: [N]
285
+ :return:
286
+ """
287
+ num = p.shape[0]
288
+
289
+ arr0 = bicubic_interpolate(p[:, 0, :, :], x, y) # [N]
290
+ arr1 = bicubic_interpolate(p[:, 1, :, :], x, y)
291
+ arr2 = bicubic_interpolate(p[:, 2, :, :], x, y)
292
+ arr3 = bicubic_interpolate(p[:, 3, :, :], x, y)
293
+
294
+ return cubic_interpolate(torch.stack([arr0, arr1, arr2, arr3], dim=-1), z) # [N]
295
+
296
+
297
+ def cubic_interpolate_batch(p, x):
298
+ """
299
+ one dimensional cubic interpolation
300
+ :param p: [B, N, 4] (4) should be in order
301
+ :param x: [B, N]
302
+ :return:
303
+ """
304
+ return p[:, :, 1] + 0.5 * x * (p[:, :, 2] - p[:, :, 0] + x * (
305
+ 2.0 * p[:, :, 0] - 5.0 * p[:, :, 1] + 4.0 * p[:, :, 2] - p[:, :, 3] + x * (
306
+ 3.0 * (p[:, :, 1] - p[:, :, 2]) + p[:, :, 3] - p[:, :, 0])))
307
+
308
+
309
+ def bicubic_interpolate_batch(p, x, y):
310
+ """
311
+ two dimensional cubic interpolation
312
+ :param p: [B, N, 4, 4]
313
+ :param x: [B, N]
314
+ :param y: [B, N]
315
+ :return:
316
+ """
317
+ B, N, _, _ = p.shape
318
+
319
+ x = x[:, :, None].repeat(1, 1, 4).view(B, N * 4) # [B, N*4]
320
+ arr = cubic_interpolate_batch(p.contiguous().view(B, N * 4, 4), x)
321
+ arr = arr.view(B, N, 4)
322
+ return cubic_interpolate_batch(arr, y) # [B, N]
323
+
324
+
325
+ # * batch version cannot speed up training
326
+ def tricubic_interpolate_batch(p, x, y, z):
327
+ """
328
+ three dimensional cubic interpolation
329
+ :param p: [N,4,4,4]
330
+ :param x: [N]
331
+ :param y: [N]
332
+ :param z: [N]
333
+ :return:
334
+ """
335
+ N = p.shape[0]
336
+
337
+ x = x[None, :].repeat(4, 1)
338
+ y = y[None, :].repeat(4, 1)
339
+
340
+ p = p.permute(1, 0, 2, 3).contiguous()
341
+
342
+ arr = bicubic_interpolate_batch(p[:, :, :, :], x, y) # [4, N]
343
+
344
+ arr = arr.permute(1, 0).contiguous() # [N, 4]
345
+
346
+ return cubic_interpolate(arr, z) # [N]
347
+
348
+
349
+ def tricubic_sample_3d(volume, optical):
350
+ """
351
+ tricubic sampling; can guarantee continuous gradient (interpolation border)
352
+ :param volume: [B, C, ID, IH, IW]
353
+ :param optical: [B, D, H, W, 3]
354
+ :param sample_num:
355
+ :return:
356
+ """
357
+
358
+ @torch.no_grad()
359
+ def get_shifts(x):
360
+ x1 = -1 * (1 + x - torch.floor(x))
361
+ x2 = -1 * (x - torch.floor(x))
362
+ x3 = torch.floor(x) + 1 - x
363
+ x4 = torch.floor(x) + 2 - x
364
+
365
+ return torch.stack([x1, x2, x3, x4], dim=-1) # (B,d,h,w,4)
366
+
367
+ N, C, ID, IH, IW = volume.shape
368
+ _, D, H, W, _ = optical.shape
369
+
370
+ device = volume.device
371
+
372
+ ix = optical[..., 0]
373
+ iy = optical[..., 1]
374
+ iz = optical[..., 2]
375
+
376
+ ix = ((ix + 1) / 2) * (IW - 1) # (B,d,h,w)
377
+ iy = ((iy + 1) / 2) * (IH - 1)
378
+ iz = ((iz + 1) / 2) * (ID - 1)
379
+
380
+ ix = ix.view(-1)
381
+ iy = iy.view(-1)
382
+ iz = iz.view(-1)
383
+
384
+ with torch.no_grad():
385
+ shifts_x = get_shifts(ix).view(-1, 4) # (B*d*h*w,4)
386
+ shifts_y = get_shifts(iy).view(-1, 4)
387
+ shifts_z = get_shifts(iz).view(-1, 4)
388
+
389
+ perm_weights = torch.ones([N * D * H * W, 4 * 4 * 4]).long().to(device)
390
+ perm = torch.cumsum(perm_weights, dim=-1) - 1 # (B*d*h*w,64)
391
+
392
+ perm_z = perm // 16 # [N*D*H*W, num]
393
+ perm_y = (perm - perm_z * 16) // 4
394
+ perm_x = (perm - perm_z * 16 - perm_y * 4)
395
+
396
+ shifts_x = torch.gather(shifts_x, 1, perm_x) # [N*D*H*W, num]
397
+ shifts_y = torch.gather(shifts_y, 1, perm_y)
398
+ shifts_z = torch.gather(shifts_z, 1, perm_z)
399
+
400
+ ix_target = (ix[:, None] + shifts_x).long() # [N*D*H*W, num]
401
+ iy_target = (iy[:, None] + shifts_y).long()
402
+ iz_target = (iz[:, None] + shifts_z).long()
403
+
404
+ torch.clamp(ix_target, 0, IW - 1, out=ix_target)
405
+ torch.clamp(iy_target, 0, IH - 1, out=iy_target)
406
+ torch.clamp(iz_target, 0, ID - 1, out=iz_target)
407
+
408
+ local_dist_x = ix - ix_target[:, 1] # ! attention here is [:, 1]
409
+ local_dist_y = iy - iy_target[:, 1 + 4]
410
+ local_dist_z = iz - iz_target[:, 1 + 16]
411
+
412
+ local_dist_x = local_dist_x.view(N, 1, D * H * W).repeat(1, C, 1).view(-1)
413
+ local_dist_y = local_dist_y.view(N, 1, D * H * W).repeat(1, C, 1).view(-1)
414
+ local_dist_z = local_dist_z.view(N, 1, D * H * W).repeat(1, C, 1).view(-1)
415
+
416
+ # ! attention: IW is correct
417
+ idx_target = iz_target * ID ** 2 + iy_target * IW + ix_target # [N*D*H*W, num]
418
+
419
+ volume = volume.view(N, C, ID * IH * IW)
420
+
421
+ out = torch.gather(volume, 2,
422
+ idx_target.view(N, 1, D * H * W * 64).repeat(1, C, 1))
423
+ out = out.view(N * C * D * H * W, 4, 4, 4)
424
+
425
+ # - tricubic_interpolate() is a bit faster than tricubic_interpolate_batch()
426
+ final = tricubic_interpolate(out, local_dist_x, local_dist_y, local_dist_z).view(N, C, D, H, W) # [N,C,D,H,W]
427
+
428
+ return final
429
+
430
+
431
+
432
+ if __name__ == "__main__":
433
+ # image = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).view(1, 3, 1, 3)
434
+ #
435
+ # optical = torch.Tensor([0.9, 0.5, 0.6, -0.7]).view(1, 1, 2, 2)
436
+ #
437
+ # print(grid_sample_2d(image, optical))
438
+ #
439
+ # print(F.grid_sample(image, optical, padding_mode='border', align_corners=True))
440
+
441
+ from ops.generate_grids import generate_grid
442
+
443
+ p = torch.tensor([x for x in range(4)]).view(1, 4).float()
444
+
445
+ v = cubic_interpolate(p, torch.tensor([0.5]).view(1))
446
+ # v = bicubic_interpolate(p, torch.tensor([2/3]).view(1) , torch.tensor([2/3]).view(1))
447
+
448
+ vsize = 9
449
+ volume = generate_grid([vsize, vsize, vsize], 1) # [1,3,10,10,10]
450
+ # volume = torch.tensor([x for x in range(1000)]).view(1, 1, 10, 10, 10).float()
451
+ X, Y, Z = 0, 0, 6
452
+ x = 2 * X / (vsize - 1) - 1
453
+ y = 2 * Y / (vsize - 1) - 1
454
+ z = 2 * Z / (vsize - 1) - 1
455
+
456
+ # print(volume[:, :, Z, Y, X])
457
+
458
+ # volume = volume.view(1, 3, -1)
459
+ # xx = volume[:, :, Z * 9*9 + Y * 9 + X]
460
+
461
+ optical = torch.Tensor([-0.6, -0.7, 0.5, 0.3, 0.5, 0.5]).view(1, 1, 1, 2, 3)
462
+
463
+ print(F.grid_sample(volume, optical, padding_mode='border', align_corners=True))
464
+ print(grid_sample_3d(volume, optical))
465
+ print(tricubic_sample_3d(volume, optical))
466
+ # target, relative_coords = implicit_sample_3d(volume, optical, 1)
467
+ # print(target)
SparseNeuS_demo_v1/tsparse/__init__.py ADDED
File without changes
SparseNeuS_demo_v1/tsparse/modules.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torchsparse
4
+ import torchsparse.nn as spnn
5
+ from torchsparse.tensor import PointTensor
6
+
7
+ from tsparse.torchsparse_utils import *
8
+
9
+
10
+ # __all__ = ['SPVCNN', 'SConv3d', 'SparseConvGRU']
11
+
12
+
13
+ class ConvBnReLU(nn.Module):
14
+ def __init__(self, in_channels, out_channels,
15
+ kernel_size=3, stride=1, pad=1):
16
+ super(ConvBnReLU, self).__init__()
17
+ self.conv = nn.Conv2d(in_channels, out_channels,
18
+ kernel_size, stride=stride, padding=pad, bias=False)
19
+ self.bn = nn.BatchNorm2d(out_channels)
20
+ self.activation = nn.ReLU(inplace=True)
21
+
22
+ def forward(self, x):
23
+ return self.activation(self.bn(self.conv(x)))
24
+
25
+
26
+ class ConvBnReLU3D(nn.Module):
27
+ def __init__(self, in_channels, out_channels,
28
+ kernel_size=3, stride=1, pad=1):
29
+ super(ConvBnReLU3D, self).__init__()
30
+ self.conv = nn.Conv3d(in_channels, out_channels,
31
+ kernel_size, stride=stride, padding=pad, bias=False)
32
+ self.bn = nn.BatchNorm3d(out_channels)
33
+ self.activation = nn.ReLU(inplace=True)
34
+
35
+ def forward(self, x):
36
+ return self.activation(self.bn(self.conv(x)))
37
+
38
+
39
+ ################################### feature net ######################################
40
+ class FeatureNet(nn.Module):
41
+ """
42
+ output 3 levels of features using a FPN structure
43
+ """
44
+
45
+ def __init__(self):
46
+ super(FeatureNet, self).__init__()
47
+
48
+ self.conv0 = nn.Sequential(
49
+ ConvBnReLU(3, 8, 3, 1, 1),
50
+ ConvBnReLU(8, 8, 3, 1, 1))
51
+
52
+ self.conv1 = nn.Sequential(
53
+ ConvBnReLU(8, 16, 5, 2, 2),
54
+ ConvBnReLU(16, 16, 3, 1, 1),
55
+ ConvBnReLU(16, 16, 3, 1, 1))
56
+
57
+ self.conv2 = nn.Sequential(
58
+ ConvBnReLU(16, 32, 5, 2, 2),
59
+ ConvBnReLU(32, 32, 3, 1, 1),
60
+ ConvBnReLU(32, 32, 3, 1, 1))
61
+
62
+ self.toplayer = nn.Conv2d(32, 32, 1)
63
+ self.lat1 = nn.Conv2d(16, 32, 1)
64
+ self.lat0 = nn.Conv2d(8, 32, 1)
65
+
66
+ # to reduce channel size of the outputs from FPN
67
+ self.smooth1 = nn.Conv2d(32, 16, 3, padding=1)
68
+ self.smooth0 = nn.Conv2d(32, 8, 3, padding=1)
69
+
70
+ def _upsample_add(self, x, y):
71
+ return torch.nn.functional.interpolate(x, scale_factor=2,
72
+ mode="bilinear", align_corners=True) + y
73
+
74
+ def forward(self, x):
75
+ # x: (B, 3, H, W)
76
+ conv0 = self.conv0(x) # (B, 8, H, W)
77
+ conv1 = self.conv1(conv0) # (B, 16, H//2, W//2)
78
+ conv2 = self.conv2(conv1) # (B, 32, H//4, W//4)
79
+ feat2 = self.toplayer(conv2) # (B, 32, H//4, W//4)
80
+ feat1 = self._upsample_add(feat2, self.lat1(conv1)) # (B, 32, H//2, W//2)
81
+ feat0 = self._upsample_add(feat1, self.lat0(conv0)) # (B, 32, H, W)
82
+
83
+ # reduce output channels
84
+ feat1 = self.smooth1(feat1) # (B, 16, H//2, W//2)
85
+ feat0 = self.smooth0(feat0) # (B, 8, H, W)
86
+
87
+ # feats = {"level_0": feat0,
88
+ # "level_1": feat1,
89
+ # "level_2": feat2}
90
+
91
+ return [feat2, feat1, feat0] # coarser to finer features
92
+
93
+
94
+ class BasicSparseConvolutionBlock(nn.Module):
95
+ def __init__(self, inc, outc, ks=3, stride=1, dilation=1):
96
+ super().__init__()
97
+ self.net = nn.Sequential(
98
+ spnn.Conv3d(inc,
99
+ outc,
100
+ kernel_size=ks,
101
+ dilation=dilation,
102
+ stride=stride),
103
+ spnn.BatchNorm(outc),
104
+ spnn.ReLU(True))
105
+
106
+ def forward(self, x):
107
+ out = self.net(x)
108
+ return out
109
+
110
+
111
+ class BasicSparseDeconvolutionBlock(nn.Module):
112
+ def __init__(self, inc, outc, ks=3, stride=1):
113
+ super().__init__()
114
+ self.net = nn.Sequential(
115
+ spnn.Conv3d(inc,
116
+ outc,
117
+ kernel_size=ks,
118
+ stride=stride,
119
+ transposed=True),
120
+ spnn.BatchNorm(outc),
121
+ spnn.ReLU(True))
122
+
123
+ def forward(self, x):
124
+ return self.net(x)
125
+
126
+
127
+ class SparseResidualBlock(nn.Module):
128
+ def __init__(self, inc, outc, ks=3, stride=1, dilation=1):
129
+ super().__init__()
130
+ self.net = nn.Sequential(
131
+ spnn.Conv3d(inc,
132
+ outc,
133
+ kernel_size=ks,
134
+ dilation=dilation,
135
+ stride=stride), spnn.BatchNorm(outc),
136
+ spnn.ReLU(True),
137
+ spnn.Conv3d(outc,
138
+ outc,
139
+ kernel_size=ks,
140
+ dilation=dilation,
141
+ stride=1), spnn.BatchNorm(outc))
142
+
143
+ self.downsample = nn.Sequential() if (inc == outc and stride == 1) else \
144
+ nn.Sequential(
145
+ spnn.Conv3d(inc, outc, kernel_size=1, dilation=1, stride=stride),
146
+ spnn.BatchNorm(outc)
147
+ )
148
+
149
+ self.relu = spnn.ReLU(True)
150
+
151
+ def forward(self, x):
152
+ out = self.relu(self.net(x) + self.downsample(x))
153
+ return out
154
+
155
+
156
+ class SPVCNN(nn.Module):
157
+ def __init__(self, **kwargs):
158
+ super().__init__()
159
+
160
+ self.dropout = kwargs['dropout']
161
+
162
+ cr = kwargs.get('cr', 1.0)
163
+ cs = [32, 64, 128, 96, 96]
164
+ cs = [int(cr * x) for x in cs]
165
+
166
+ if 'pres' in kwargs and 'vres' in kwargs:
167
+ self.pres = kwargs['pres']
168
+ self.vres = kwargs['vres']
169
+
170
+ self.stem = nn.Sequential(
171
+ spnn.Conv3d(kwargs['in_channels'], cs[0], kernel_size=3, stride=1),
172
+ spnn.BatchNorm(cs[0]), spnn.ReLU(True)
173
+ )
174
+
175
+ self.stage1 = nn.Sequential(
176
+ BasicSparseConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1),
177
+ SparseResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1),
178
+ SparseResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1),
179
+ )
180
+
181
+ self.stage2 = nn.Sequential(
182
+ BasicSparseConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1),
183
+ SparseResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1),
184
+ SparseResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1),
185
+ )
186
+
187
+ self.up1 = nn.ModuleList([
188
+ BasicSparseDeconvolutionBlock(cs[2], cs[3], ks=2, stride=2),
189
+ nn.Sequential(
190
+ SparseResidualBlock(cs[3] + cs[1], cs[3], ks=3, stride=1,
191
+ dilation=1),
192
+ SparseResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1),
193
+ )
194
+ ])
195
+
196
+ self.up2 = nn.ModuleList([
197
+ BasicSparseDeconvolutionBlock(cs[3], cs[4], ks=2, stride=2),
198
+ nn.Sequential(
199
+ SparseResidualBlock(cs[4] + cs[0], cs[4], ks=3, stride=1,
200
+ dilation=1),
201
+ SparseResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1),
202
+ )
203
+ ])
204
+
205
+ self.point_transforms = nn.ModuleList([
206
+ nn.Sequential(
207
+ nn.Linear(cs[0], cs[2]),
208
+ nn.BatchNorm1d(cs[2]),
209
+ nn.ReLU(True),
210
+ ),
211
+ nn.Sequential(
212
+ nn.Linear(cs[2], cs[4]),
213
+ nn.BatchNorm1d(cs[4]),
214
+ nn.ReLU(True),
215
+ )
216
+ ])
217
+
218
+ self.weight_initialization()
219
+
220
+ if self.dropout:
221
+ self.dropout = nn.Dropout(0.3, True)
222
+
223
+ def weight_initialization(self):
224
+ for m in self.modules():
225
+ if isinstance(m, nn.BatchNorm1d):
226
+ nn.init.constant_(m.weight, 1)
227
+ nn.init.constant_(m.bias, 0)
228
+
229
+ def forward(self, z):
230
+ # x: SparseTensor z: PointTensor
231
+ x0 = initial_voxelize(z, self.pres, self.vres)
232
+
233
+ x0 = self.stem(x0)
234
+ z0 = voxel_to_point(x0, z, nearest=False)
235
+ z0.F = z0.F
236
+
237
+ x1 = point_to_voxel(x0, z0)
238
+ x1 = self.stage1(x1)
239
+ x2 = self.stage2(x1)
240
+ z1 = voxel_to_point(x2, z0)
241
+ z1.F = z1.F + self.point_transforms[0](z0.F)
242
+
243
+ y3 = point_to_voxel(x2, z1)
244
+ if self.dropout:
245
+ y3.F = self.dropout(y3.F)
246
+ y3 = self.up1[0](y3)
247
+ y3 = torchsparse.cat([y3, x1])
248
+ y3 = self.up1[1](y3)
249
+
250
+ y4 = self.up2[0](y3)
251
+ y4 = torchsparse.cat([y4, x0])
252
+ y4 = self.up2[1](y4)
253
+ z3 = voxel_to_point(y4, z1)
254
+ z3.F = z3.F + self.point_transforms[1](z1.F)
255
+
256
+ return z3.F
257
+
258
+
259
+ class SparseCostRegNet(nn.Module):
260
+ """
261
+ Sparse cost regularization network;
262
+ require sparse tensors as input
263
+ """
264
+
265
+ def __init__(self, d_in, d_out=8):
266
+ super(SparseCostRegNet, self).__init__()
267
+ self.d_in = d_in
268
+ self.d_out = d_out
269
+
270
+ self.conv0 = BasicSparseConvolutionBlock(d_in, d_out)
271
+
272
+ self.conv1 = BasicSparseConvolutionBlock(d_out, 16, stride=2)
273
+ self.conv2 = BasicSparseConvolutionBlock(16, 16)
274
+
275
+ self.conv3 = BasicSparseConvolutionBlock(16, 32, stride=2)
276
+ self.conv4 = BasicSparseConvolutionBlock(32, 32)
277
+
278
+ self.conv5 = BasicSparseConvolutionBlock(32, 64, stride=2)
279
+ self.conv6 = BasicSparseConvolutionBlock(64, 64)
280
+
281
+ self.conv7 = BasicSparseDeconvolutionBlock(64, 32, ks=3, stride=2)
282
+
283
+ self.conv9 = BasicSparseDeconvolutionBlock(32, 16, ks=3, stride=2)
284
+
285
+ self.conv11 = BasicSparseDeconvolutionBlock(16, d_out, ks=3, stride=2)
286
+
287
+ def forward(self, x):
288
+ """
289
+
290
+ :param x: sparse tensor
291
+ :return: sparse tensor
292
+ """
293
+ conv0 = self.conv0(x)
294
+ conv2 = self.conv2(self.conv1(conv0))
295
+ conv4 = self.conv4(self.conv3(conv2))
296
+
297
+ x = self.conv6(self.conv5(conv4))
298
+ x = conv4 + self.conv7(x)
299
+ del conv4
300
+ x = conv2 + self.conv9(x)
301
+ del conv2
302
+ x = conv0 + self.conv11(x)
303
+ del conv0
304
+ return x.F
305
+
306
+
307
+ class SConv3d(nn.Module):
308
+ def __init__(self, inc, outc, pres, vres, ks=3, stride=1, dilation=1):
309
+ super().__init__()
310
+ self.net = spnn.Conv3d(inc,
311
+ outc,
312
+ kernel_size=ks,
313
+ dilation=dilation,
314
+ stride=stride)
315
+ self.point_transforms = nn.Sequential(
316
+ nn.Linear(inc, outc),
317
+ )
318
+ self.pres = pres
319
+ self.vres = vres
320
+
321
+ def forward(self, z):
322
+ x = initial_voxelize(z, self.pres, self.vres)
323
+ x = self.net(x)
324
+ out = voxel_to_point(x, z, nearest=False)
325
+ out.F = out.F + self.point_transforms(z.F)
326
+ return out
SparseNeuS_demo_v1/tsparse/torchsparse_utils.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copied from:
3
+ https://github.com/mit-han-lab/spvnas/blob/b24f50379ed888d3a0e784508a809d4e92e820c0/core/models/utils.py
4
+ """
5
+ import torch
6
+ import torchsparse.nn.functional as F
7
+ from torchsparse import PointTensor, SparseTensor
8
+ from torchsparse.nn.utils import get_kernel_offsets
9
+
10
+ import numpy as np
11
+
12
+ # __all__ = ['initial_voxelize', 'point_to_voxel', 'voxel_to_point']
13
+
14
+
15
+ # z: PointTensor
16
+ # return: SparseTensor
17
+ def initial_voxelize(z, init_res, after_res):
18
+ new_float_coord = torch.cat(
19
+ [(z.C[:, :3] * init_res) / after_res, z.C[:, -1].view(-1, 1)], 1)
20
+
21
+ pc_hash = F.sphash(torch.floor(new_float_coord).int())
22
+ sparse_hash = torch.unique(pc_hash)
23
+ idx_query = F.sphashquery(pc_hash, sparse_hash)
24
+ counts = F.spcount(idx_query.int(), len(sparse_hash))
25
+
26
+ inserted_coords = F.spvoxelize(torch.floor(new_float_coord), idx_query,
27
+ counts)
28
+ inserted_coords = torch.round(inserted_coords).int()
29
+ inserted_feat = F.spvoxelize(z.F, idx_query, counts)
30
+
31
+ new_tensor = SparseTensor(inserted_feat, inserted_coords, 1)
32
+ new_tensor.cmaps.setdefault(new_tensor.stride, new_tensor.coords)
33
+ z.additional_features['idx_query'][1] = idx_query
34
+ z.additional_features['counts'][1] = counts
35
+ z.C = new_float_coord
36
+
37
+ return new_tensor
38
+
39
+
40
+ # x: SparseTensor, z: PointTensor
41
+ # return: SparseTensor
42
+ def point_to_voxel(x, z):
43
+ if z.additional_features is None or z.additional_features.get('idx_query') is None \
44
+ or z.additional_features['idx_query'].get(x.s) is None:
45
+ # pc_hash = hash_gpu(torch.floor(z.C).int())
46
+ pc_hash = F.sphash(
47
+ torch.cat([
48
+ torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0],
49
+ z.C[:, -1].int().view(-1, 1)
50
+ ], 1))
51
+ sparse_hash = F.sphash(x.C)
52
+ idx_query = F.sphashquery(pc_hash, sparse_hash)
53
+ counts = F.spcount(idx_query.int(), x.C.shape[0])
54
+ z.additional_features['idx_query'][x.s] = idx_query
55
+ z.additional_features['counts'][x.s] = counts
56
+ else:
57
+ idx_query = z.additional_features['idx_query'][x.s]
58
+ counts = z.additional_features['counts'][x.s]
59
+
60
+ inserted_feat = F.spvoxelize(z.F, idx_query, counts)
61
+ new_tensor = SparseTensor(inserted_feat, x.C, x.s)
62
+ new_tensor.cmaps = x.cmaps
63
+ new_tensor.kmaps = x.kmaps
64
+
65
+ return new_tensor
66
+
67
+
68
+ # x: SparseTensor, z: PointTensor
69
+ # return: PointTensor
70
+ def voxel_to_point(x, z, nearest=False):
71
+ if z.idx_query is None or z.weights is None or z.idx_query.get(
72
+ x.s) is None or z.weights.get(x.s) is None:
73
+ off = get_kernel_offsets(2, x.s, 1, device=z.F.device)
74
+ # old_hash = kernel_hash_gpu(torch.floor(z.C).int(), off)
75
+ old_hash = F.sphash(
76
+ torch.cat([
77
+ torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0],
78
+ z.C[:, -1].int().view(-1, 1)
79
+ ], 1), off)
80
+ mm = x.C.to(z.F.device)
81
+ pc_hash = F.sphash(x.C.to(z.F.device))
82
+ idx_query = F.sphashquery(old_hash, pc_hash)
83
+ weights = F.calc_ti_weights(z.C, idx_query,
84
+ scale=x.s[0]).transpose(0, 1).contiguous()
85
+ idx_query = idx_query.transpose(0, 1).contiguous()
86
+ if nearest:
87
+ weights[:, 1:] = 0.
88
+ idx_query[:, 1:] = -1
89
+ new_feat = F.spdevoxelize(x.F, idx_query, weights)
90
+ new_tensor = PointTensor(new_feat,
91
+ z.C,
92
+ idx_query=z.idx_query,
93
+ weights=z.weights)
94
+ new_tensor.additional_features = z.additional_features
95
+ new_tensor.idx_query[x.s] = idx_query
96
+ new_tensor.weights[x.s] = weights
97
+ z.idx_query[x.s] = idx_query
98
+ z.weights[x.s] = weights
99
+
100
+ else:
101
+ new_feat = F.spdevoxelize(x.F, z.idx_query.get(x.s),
102
+ z.weights.get(x.s)) # - sparse trilinear interpoltation operation
103
+ new_tensor = PointTensor(new_feat,
104
+ z.C,
105
+ idx_query=z.idx_query,
106
+ weights=z.weights)
107
+ new_tensor.additional_features = z.additional_features
108
+
109
+ return new_tensor
110
+
111
+
112
+ def sparse_to_dense_torch_batch(locs, values, dim, default_val):
113
+ dense = torch.full([dim[0], dim[1], dim[2], dim[3]], float(default_val), device=locs.device)
114
+ dense[locs[:, 0], locs[:, 1], locs[:, 2], locs[:, 3]] = values
115
+ return dense
116
+
117
+
118
+ def sparse_to_dense_torch(locs, values, dim, default_val, device):
119
+ dense = torch.full([dim[0], dim[1], dim[2]], float(default_val), device=device)
120
+ if locs.shape[0] > 0:
121
+ dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values
122
+ return dense
123
+
124
+
125
+ def sparse_to_dense_channel(locs, values, dim, c, default_val, device):
126
+ locs = locs.to(torch.int64)
127
+ dense = torch.full([dim[0], dim[1], dim[2], c], float(default_val), device=device)
128
+ if locs.shape[0] > 0:
129
+ dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values
130
+ return dense
131
+
132
+
133
+ def sparse_to_dense_np(locs, values, dim, default_val):
134
+ dense = np.zeros([dim[0], dim[1], dim[2]], dtype=values.dtype)
135
+ dense.fill(default_val)
136
+ dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values
137
+ return dense
SparseNeuS_demo_v1/utils/__init__.py ADDED
File without changes
SparseNeuS_demo_v1/utils/misc_utils.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, torch, cv2, re
2
+ import numpy as np
3
+
4
+ from PIL import Image
5
+ import torch.nn.functional as F
6
+ import torchvision.transforms as T
7
+
8
+ # Misc
9
+ img2mse = lambda x, y: torch.mean((x - y) ** 2)
10
+ mse2psnr = lambda x: -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
11
+ to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8)
12
+ mse2psnr2 = lambda x: -10. * np.log(x) / np.log(10.)
13
+
14
+
15
+ def get_psnr(imgs_pred, imgs_gt):
16
+ psnrs = []
17
+ for (img, tar) in zip(imgs_pred, imgs_gt):
18
+ psnrs.append(mse2psnr2(np.mean((img - tar.cpu().numpy()) ** 2)))
19
+ return np.array(psnrs)
20
+
21
+
22
+ def init_log(log, keys):
23
+ for key in keys:
24
+ log[key] = torch.tensor([0.0], dtype=float)
25
+ return log
26
+
27
+
28
+ def visualize_depth_numpy(depth, minmax=None, cmap=cv2.COLORMAP_JET):
29
+ """
30
+ depth: (H, W)
31
+ """
32
+
33
+ x = np.nan_to_num(depth) # change nan to 0
34
+ if minmax is None:
35
+ mi = np.min(x[x > 0]) # get minimum positive depth (ignore background)
36
+ ma = np.max(x)
37
+ else:
38
+ mi, ma = minmax
39
+
40
+ x = (x - mi) / (ma - mi + 1e-8) # normalize to 0~1
41
+ x = (255 * x).astype(np.uint8)
42
+ x_ = cv2.applyColorMap(x, cmap)
43
+ return x_, [mi, ma]
44
+
45
+
46
+ def visualize_depth(depth, minmax=None, cmap=cv2.COLORMAP_JET):
47
+ """
48
+ depth: (H, W)
49
+ """
50
+ if type(depth) is not np.ndarray:
51
+ depth = depth.cpu().numpy()
52
+
53
+ x = np.nan_to_num(depth) # change nan to 0
54
+ if minmax is None:
55
+ mi = np.min(x[x > 0]) # get minimum positive depth (ignore background)
56
+ ma = np.max(x)
57
+ else:
58
+ mi, ma = minmax
59
+
60
+ x = (x - mi) / (ma - mi + 1e-8) # normalize to 0~1
61
+ x = (255 * x).astype(np.uint8)
62
+ x_ = Image.fromarray(cv2.applyColorMap(x, cmap))
63
+ x_ = T.ToTensor()(x_) # (3, H, W)
64
+ return x_, [mi, ma]
65
+
66
+
67
+ def abs_error_numpy(depth_pred, depth_gt, mask):
68
+ depth_pred, depth_gt = depth_pred[mask], depth_gt[mask]
69
+ return np.abs(depth_pred - depth_gt)
70
+
71
+
72
+ def abs_error(depth_pred, depth_gt, mask):
73
+ depth_pred, depth_gt = depth_pred[mask], depth_gt[mask]
74
+ err = depth_pred - depth_gt
75
+ return np.abs(err) if type(depth_pred) is np.ndarray else err.abs()
76
+
77
+
78
+ def acc_threshold(depth_pred, depth_gt, mask, threshold):
79
+ """
80
+ computes the percentage of pixels whose depth error is less than @threshold
81
+ """
82
+ errors = abs_error(depth_pred, depth_gt, mask)
83
+ acc_mask = errors < threshold
84
+ return acc_mask.astype('float') if type(depth_pred) is np.ndarray else acc_mask.float()
85
+
86
+
87
+ def to_tensor_cuda(data, device, filter):
88
+ for item in data.keys():
89
+
90
+ if item in filter:
91
+ continue
92
+
93
+ if type(data[item]) is np.ndarray:
94
+ data[item] = torch.tensor(data[item], dtype=torch.float32, device=device)
95
+ else:
96
+ data[item] = data[item].float().to(device)
97
+ return data
98
+
99
+
100
+ def to_cuda(data, device, filter):
101
+ for item in data.keys():
102
+ if item in filter:
103
+ continue
104
+
105
+ data[item] = data[item].float().to(device)
106
+ return data
107
+
108
+
109
+ def tensor_unsqueeze(data, filter):
110
+ for item in data.keys():
111
+ if item in filter:
112
+ continue
113
+
114
+ data[item] = data[item][None]
115
+ return data
116
+
117
+
118
+ def filter_keys(dict):
119
+ dict.pop('N_samples')
120
+ if 'ndc' in dict.keys():
121
+ dict.pop('ndc')
122
+ if 'lindisp' in dict.keys():
123
+ dict.pop('lindisp')
124
+ return dict
125
+
126
+
127
+ def sub_selete_data(data_batch, device, idx, filtKey=[],
128
+ filtIndex=['view_ids_all', 'c2ws_all', 'scan', 'bbox', 'w2ref', 'ref2w', 'light_id', 'ckpt',
129
+ 'idx']):
130
+ data_sub_selete = {}
131
+ for item in data_batch.keys():
132
+ data_sub_selete[item] = data_batch[item][:, idx].float() if (
133
+ item not in filtIndex and torch.is_tensor(item) and item.dim() > 2) else data_batch[item].float()
134
+ if not data_sub_selete[item].is_cuda:
135
+ data_sub_selete[item] = data_sub_selete[item].to(device)
136
+ return data_sub_selete
137
+
138
+
139
+ def detach_data(dictionary):
140
+ dictionary_new = {}
141
+ for key in dictionary.keys():
142
+ dictionary_new[key] = dictionary[key].detach().clone()
143
+ return dictionary_new
144
+
145
+
146
+ def read_pfm(filename):
147
+ file = open(filename, 'rb')
148
+ color = None
149
+ width = None
150
+ height = None
151
+ scale = None
152
+ endian = None
153
+
154
+ header = file.readline().decode('utf-8').rstrip()
155
+ if header == 'PF':
156
+ color = True
157
+ elif header == 'Pf':
158
+ color = False
159
+ else:
160
+ raise Exception('Not a PFM file.')
161
+
162
+ dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8'))
163
+ if dim_match:
164
+ width, height = map(int, dim_match.groups())
165
+ else:
166
+ raise Exception('Malformed PFM header.')
167
+
168
+ scale = float(file.readline().rstrip())
169
+ if scale < 0: # little-endian
170
+ endian = '<'
171
+ scale = -scale
172
+ else:
173
+ endian = '>' # big-endian
174
+
175
+ data = np.fromfile(file, endian + 'f')
176
+ shape = (height, width, 3) if color else (height, width)
177
+
178
+ data = np.reshape(data, shape)
179
+ data = np.flipud(data)
180
+ file.close()
181
+ return data, scale
182
+
183
+
184
+ from torch.optim.lr_scheduler import CosineAnnealingLR, MultiStepLR
185
+
186
+
187
+ # from warmup_scheduler import GradualWarmupScheduler
188
+ def get_scheduler(hparams, optimizer):
189
+ eps = 1e-8
190
+ if hparams.lr_scheduler == 'steplr':
191
+ scheduler = MultiStepLR(optimizer, milestones=hparams.decay_step,
192
+ gamma=hparams.decay_gamma)
193
+ elif hparams.lr_scheduler == 'cosine':
194
+ scheduler = CosineAnnealingLR(optimizer, T_max=hparams.num_epochs, eta_min=eps)
195
+
196
+ else:
197
+ raise ValueError('scheduler not recognized!')
198
+
199
+ # if hparams.warmup_epochs > 0 and hparams.optimizer not in ['radam', 'ranger']:
200
+ # scheduler = GradualWarmupScheduler(optimizer, multiplier=hparams.warmup_multiplier,
201
+ # total_epoch=hparams.warmup_epochs, after_scheduler=scheduler)
202
+ return scheduler
203
+
204
+
205
+ #### pairing ####
206
+ def get_nearest_pose_ids(tar_pose, ref_poses, num_select):
207
+ '''
208
+ Args:
209
+ tar_pose: target pose [N, 4, 4]
210
+ ref_poses: reference poses [M, 4, 4]
211
+ num_select: the number of nearest views to select
212
+ Returns: the selected indices
213
+ '''
214
+
215
+ dists = np.linalg.norm(tar_pose[:, None, :3, 3] - ref_poses[None, :, :3, 3], axis=-1)
216
+
217
+ sorted_ids = np.argsort(dists, axis=-1)
218
+ selected_ids = sorted_ids[:, :num_select]
219
+ return selected_ids
configs/sd-objaverse-finetune-c_concat-256.yaml ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "image_target"
11
+ cond_stage_key: "image_cond"
12
+ image_size: 32
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: hybrid
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+
19
+ scheduler_config: # 10000 warmup steps
20
+ target: ldm.lr_scheduler.LambdaLinearScheduler
21
+ params:
22
+ warm_up_steps: [ 100 ]
23
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
24
+ f_start: [ 1.e-6 ]
25
+ f_max: [ 1. ]
26
+ f_min: [ 1. ]
27
+
28
+ unet_config:
29
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
30
+ params:
31
+ image_size: 32 # unused
32
+ in_channels: 8
33
+ out_channels: 4
34
+ model_channels: 320
35
+ attention_resolutions: [ 4, 2, 1 ]
36
+ num_res_blocks: 2
37
+ channel_mult: [ 1, 2, 4, 4 ]
38
+ num_heads: 8
39
+ use_spatial_transformer: True
40
+ transformer_depth: 1
41
+ context_dim: 768
42
+ use_checkpoint: True
43
+ legacy: False
44
+
45
+ first_stage_config:
46
+ target: ldm.models.autoencoder.AutoencoderKL
47
+ params:
48
+ embed_dim: 4
49
+ monitor: val/rec_loss
50
+ ddconfig:
51
+ double_z: true
52
+ z_channels: 4
53
+ resolution: 256
54
+ in_channels: 3
55
+ out_ch: 3
56
+ ch: 128
57
+ ch_mult:
58
+ - 1
59
+ - 2
60
+ - 4
61
+ - 4
62
+ num_res_blocks: 2
63
+ attn_resolutions: []
64
+ dropout: 0.0
65
+ lossconfig:
66
+ target: torch.nn.Identity
67
+
68
+ cond_stage_config:
69
+ target: ldm.modules.encoders.modules.FrozenCLIPImageEmbedder
70
+
71
+
72
+ data:
73
+ target: ldm.data.simple.ObjaverseDataModuleFromConfig
74
+ params:
75
+ root_dir: 'views_whole_sphere'
76
+ batch_size: 192
77
+ num_workers: 16
78
+ total_view: 4
79
+ train:
80
+ validation: False
81
+ image_transforms:
82
+ size: 256
83
+
84
+ validation:
85
+ validation: True
86
+ image_transforms:
87
+ size: 256
88
+
89
+
90
+ lightning:
91
+ find_unused_parameters: false
92
+ metrics_over_trainsteps_checkpoint: True
93
+ modelcheckpoint:
94
+ params:
95
+ every_n_train_steps: 5000
96
+ callbacks:
97
+ image_logger:
98
+ target: main.ImageLogger
99
+ params:
100
+ batch_frequency: 500
101
+ max_images: 32
102
+ increase_log_steps: False
103
+ log_first_step: True
104
+ log_images_kwargs:
105
+ use_ema_scope: False
106
+ inpaint: False
107
+ plot_progressive_rows: False
108
+ plot_diffusion_rows: False
109
+ N: 32
110
+ unconditional_guidance_scale: 3.0
111
+ unconditional_guidance_label: [""]
112
+
113
+ trainer:
114
+ benchmark: True
115
+ val_check_interval: 5000000 # really sorry
116
+ num_sanity_val_steps: 0
117
+ accumulate_grad_batches: 1
ldm/data/__init__.py ADDED
File without changes
ldm/data/base.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ from abc import abstractmethod
4
+ from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
5
+
6
+
7
+ class Txt2ImgIterableBaseDataset(IterableDataset):
8
+ '''
9
+ Define an interface to make the IterableDatasets for text2img data chainable
10
+ '''
11
+ def __init__(self, num_records=0, valid_ids=None, size=256):
12
+ super().__init__()
13
+ self.num_records = num_records
14
+ self.valid_ids = valid_ids
15
+ self.sample_ids = valid_ids
16
+ self.size = size
17
+
18
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
19
+
20
+ def __len__(self):
21
+ return self.num_records
22
+
23
+ @abstractmethod
24
+ def __iter__(self):
25
+ pass
26
+
27
+
28
+ class PRNGMixin(object):
29
+ """
30
+ Adds a prng property which is a numpy RandomState which gets
31
+ reinitialized whenever the pid changes to avoid synchronized sampling
32
+ behavior when used in conjunction with multiprocessing.
33
+ """
34
+ @property
35
+ def prng(self):
36
+ currentpid = os.getpid()
37
+ if getattr(self, "_initpid", None) != currentpid:
38
+ self._initpid = currentpid
39
+ self._prng = np.random.RandomState()
40
+ return self._prng
ldm/data/coco.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import albumentations
4
+ import numpy as np
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+ from torch.utils.data import Dataset
8
+ from abc import abstractmethod
9
+
10
+
11
+ class CocoBase(Dataset):
12
+ """needed for (image, caption, segmentation) pairs"""
13
+ def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
14
+ crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
15
+ self.split = self.get_split()
16
+ self.size = size
17
+ if crop_size is None:
18
+ self.crop_size = size
19
+ else:
20
+ self.crop_size = crop_size
21
+
22
+ assert crop_type in [None, 'random', 'center']
23
+ self.crop_type = crop_type
24
+ self.use_segmenation = use_segmentation
25
+ self.onehot = onehot_segmentation # return segmentation as rgb or one hot
26
+ self.stuffthing = use_stuffthing # include thing in segmentation
27
+ if self.onehot and not self.stuffthing:
28
+ raise NotImplemented("One hot mode is only supported for the "
29
+ "stuffthings version because labels are stored "
30
+ "a bit different.")
31
+
32
+ data_json = datajson
33
+ with open(data_json) as json_file:
34
+ self.json_data = json.load(json_file)
35
+ self.img_id_to_captions = dict()
36
+ self.img_id_to_filepath = dict()
37
+ self.img_id_to_segmentation_filepath = dict()
38
+
39
+ assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
40
+ f"captions_val{self.year()}.json"]
41
+ # TODO currently hardcoded paths, would be better to follow logic in
42
+ # cocstuff pixelmaps
43
+ if self.use_segmenation:
44
+ if self.stuffthing:
45
+ self.segmentation_prefix = (
46
+ f"data/cocostuffthings/val{self.year()}" if
47
+ data_json.endswith(f"captions_val{self.year()}.json") else
48
+ f"data/cocostuffthings/train{self.year()}")
49
+ else:
50
+ self.segmentation_prefix = (
51
+ f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
52
+ data_json.endswith(f"captions_val{self.year()}.json") else
53
+ f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
54
+
55
+ imagedirs = self.json_data["images"]
56
+ self.labels = {"image_ids": list()}
57
+ for imgdir in tqdm(imagedirs, desc="ImgToPath"):
58
+ self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
59
+ self.img_id_to_captions[imgdir["id"]] = list()
60
+ pngfilename = imgdir["file_name"].replace("jpg", "png")
61
+ if self.use_segmenation:
62
+ self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
63
+ self.segmentation_prefix, pngfilename)
64
+ if given_files is not None:
65
+ if pngfilename in given_files:
66
+ self.labels["image_ids"].append(imgdir["id"])
67
+ else:
68
+ self.labels["image_ids"].append(imgdir["id"])
69
+
70
+ capdirs = self.json_data["annotations"]
71
+ for capdir in tqdm(capdirs, desc="ImgToCaptions"):
72
+ # there are in average 5 captions per image
73
+ #self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
74
+ self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
75
+
76
+ self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
77
+ if self.split=="validation":
78
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
79
+ else:
80
+ # default option for train is random crop
81
+ if self.crop_type in [None, 'random']:
82
+ self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
83
+ else:
84
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
85
+ self.preprocessor = albumentations.Compose(
86
+ [self.rescaler, self.cropper],
87
+ additional_targets={"segmentation": "image"})
88
+ if force_no_crop:
89
+ self.rescaler = albumentations.Resize(height=self.size, width=self.size)
90
+ self.preprocessor = albumentations.Compose(
91
+ [self.rescaler],
92
+ additional_targets={"segmentation": "image"})
93
+
94
+ @abstractmethod
95
+ def year(self):
96
+ raise NotImplementedError()
97
+
98
+ def __len__(self):
99
+ return len(self.labels["image_ids"])
100
+
101
+ def preprocess_image(self, image_path, segmentation_path=None):
102
+ image = Image.open(image_path)
103
+ if not image.mode == "RGB":
104
+ image = image.convert("RGB")
105
+ image = np.array(image).astype(np.uint8)
106
+ if segmentation_path:
107
+ segmentation = Image.open(segmentation_path)
108
+ if not self.onehot and not segmentation.mode == "RGB":
109
+ segmentation = segmentation.convert("RGB")
110
+ segmentation = np.array(segmentation).astype(np.uint8)
111
+ if self.onehot:
112
+ assert self.stuffthing
113
+ # stored in caffe format: unlabeled==255. stuff and thing from
114
+ # 0-181. to be compatible with the labels in
115
+ # https://github.com/nightrome/cocostuff/blob/master/labels.txt
116
+ # we shift stuffthing one to the right and put unlabeled in zero
117
+ # as long as segmentation is uint8 shifting to right handles the
118
+ # latter too
119
+ assert segmentation.dtype == np.uint8
120
+ segmentation = segmentation + 1
121
+
122
+ processed = self.preprocessor(image=image, segmentation=segmentation)
123
+
124
+ image, segmentation = processed["image"], processed["segmentation"]
125
+ else:
126
+ image = self.preprocessor(image=image,)['image']
127
+
128
+ image = (image / 127.5 - 1.0).astype(np.float32)
129
+ if segmentation_path:
130
+ if self.onehot:
131
+ assert segmentation.dtype == np.uint8
132
+ # make it one hot
133
+ n_labels = 183
134
+ flatseg = np.ravel(segmentation)
135
+ onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
136
+ onehot[np.arange(flatseg.size), flatseg] = True
137
+ onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
138
+ segmentation = onehot
139
+ else:
140
+ segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
141
+ return image, segmentation
142
+ else:
143
+ return image
144
+
145
+ def __getitem__(self, i):
146
+ img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
147
+ if self.use_segmenation:
148
+ seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
149
+ image, segmentation = self.preprocess_image(img_path, seg_path)
150
+ else:
151
+ image = self.preprocess_image(img_path)
152
+ captions = self.img_id_to_captions[self.labels["image_ids"][i]]
153
+ # randomly draw one of all available captions per image
154
+ caption = captions[np.random.randint(0, len(captions))]
155
+ example = {"image": image,
156
+ #"caption": [str(caption[0])],
157
+ "caption": caption,
158
+ "img_path": img_path,
159
+ "filename_": img_path.split(os.sep)[-1]
160
+ }
161
+ if self.use_segmenation:
162
+ example.update({"seg_path": seg_path, 'segmentation': segmentation})
163
+ return example
164
+
165
+
166
+ class CocoImagesAndCaptionsTrain2017(CocoBase):
167
+ """returns a pair of (image, caption)"""
168
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
169
+ super().__init__(size=size,
170
+ dataroot="data/coco/train2017",
171
+ datajson="data/coco/annotations/captions_train2017.json",
172
+ onehot_segmentation=onehot_segmentation,
173
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
174
+
175
+ def get_split(self):
176
+ return "train"
177
+
178
+ def year(self):
179
+ return '2017'
180
+
181
+
182
+ class CocoImagesAndCaptionsValidation2017(CocoBase):
183
+ """returns a pair of (image, caption)"""
184
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
185
+ given_files=None):
186
+ super().__init__(size=size,
187
+ dataroot="data/coco/val2017",
188
+ datajson="data/coco/annotations/captions_val2017.json",
189
+ onehot_segmentation=onehot_segmentation,
190
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
191
+ given_files=given_files)
192
+
193
+ def get_split(self):
194
+ return "validation"
195
+
196
+ def year(self):
197
+ return '2017'
198
+
199
+
200
+
201
+ class CocoImagesAndCaptionsTrain2014(CocoBase):
202
+ """returns a pair of (image, caption)"""
203
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
204
+ super().__init__(size=size,
205
+ dataroot="data/coco/train2014",
206
+ datajson="data/coco/annotations2014/annotations/captions_train2014.json",
207
+ onehot_segmentation=onehot_segmentation,
208
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
209
+ use_segmentation=False,
210
+ crop_type=crop_type)
211
+
212
+ def get_split(self):
213
+ return "train"
214
+
215
+ def year(self):
216
+ return '2014'
217
+
218
+ class CocoImagesAndCaptionsValidation2014(CocoBase):
219
+ """returns a pair of (image, caption)"""
220
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
221
+ given_files=None,crop_type='center',**kwargs):
222
+ super().__init__(size=size,
223
+ dataroot="data/coco/val2014",
224
+ datajson="data/coco/annotations2014/annotations/captions_val2014.json",
225
+ onehot_segmentation=onehot_segmentation,
226
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
227
+ given_files=given_files,
228
+ use_segmentation=False,
229
+ crop_type=crop_type)
230
+
231
+ def get_split(self):
232
+ return "validation"
233
+
234
+ def year(self):
235
+ return '2014'
236
+
237
+ if __name__ == '__main__':
238
+ with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
239
+ json_data = json.load(json_file)
240
+ capdirs = json_data["annotations"]
241
+ import pudb; pudb.set_trace()
242
+ #d2 = CocoImagesAndCaptionsTrain2014(size=256)
243
+ d2 = CocoImagesAndCaptionsValidation2014(size=256)
244
+ print("constructed dataset.")
245
+ print(f"length of {d2.__class__.__name__}: {len(d2)}")
246
+
247
+ ex2 = d2[0]
248
+ # ex3 = d3[0]
249
+ # print(ex1["image"].shape)
250
+ print(ex2["image"].shape)
251
+ # print(ex3["image"].shape)
252
+ # print(ex1["segmentation"].shape)
253
+ print(ex2["caption"].__class__.__name__)
ldm/data/dummy.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import string
4
+ from torch.utils.data import Dataset, Subset
5
+
6
+ class DummyData(Dataset):
7
+ def __init__(self, length, size):
8
+ self.length = length
9
+ self.size = size
10
+
11
+ def __len__(self):
12
+ return self.length
13
+
14
+ def __getitem__(self, i):
15
+ x = np.random.randn(*self.size)
16
+ letters = string.ascii_lowercase
17
+ y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
18
+ return {"jpg": x, "txt": y}
19
+
20
+
21
+ class DummyDataWithEmbeddings(Dataset):
22
+ def __init__(self, length, size, emb_size):
23
+ self.length = length
24
+ self.size = size
25
+ self.emb_size = emb_size
26
+
27
+ def __len__(self):
28
+ return self.length
29
+
30
+ def __getitem__(self, i):
31
+ x = np.random.randn(*self.size)
32
+ y = np.random.randn(*self.emb_size).astype(np.float32)
33
+ return {"jpg": x, "txt": y}
34
+
ldm/data/imagenet.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, yaml, pickle, shutil, tarfile, glob
2
+ import cv2
3
+ import albumentations
4
+ import PIL
5
+ import numpy as np
6
+ import torchvision.transforms.functional as TF
7
+ from omegaconf import OmegaConf
8
+ from functools import partial
9
+ from PIL import Image
10
+ from tqdm import tqdm
11
+ from torch.utils.data import Dataset, Subset
12
+
13
+ import taming.data.utils as tdu
14
+ from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
15
+ from taming.data.imagenet import ImagePaths
16
+
17
+ from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
18
+
19
+
20
+ def synset2idx(path_to_yaml="data/index_synset.yaml"):
21
+ with open(path_to_yaml) as f:
22
+ di2s = yaml.load(f)
23
+ return dict((v,k) for k,v in di2s.items())
24
+
25
+
26
+ class ImageNetBase(Dataset):
27
+ def __init__(self, config=None):
28
+ self.config = config or OmegaConf.create()
29
+ if not type(self.config)==dict:
30
+ self.config = OmegaConf.to_container(self.config)
31
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
32
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
33
+ self._prepare()
34
+ self._prepare_synset_to_human()
35
+ self._prepare_idx_to_synset()
36
+ self._prepare_human_to_integer_label()
37
+ self._load()
38
+
39
+ def __len__(self):
40
+ return len(self.data)
41
+
42
+ def __getitem__(self, i):
43
+ return self.data[i]
44
+
45
+ def _prepare(self):
46
+ raise NotImplementedError()
47
+
48
+ def _filter_relpaths(self, relpaths):
49
+ ignore = set([
50
+ "n06596364_9591.JPEG",
51
+ ])
52
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
53
+ if "sub_indices" in self.config:
54
+ indices = str_to_indices(self.config["sub_indices"])
55
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
56
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
57
+ files = []
58
+ for rpath in relpaths:
59
+ syn = rpath.split("/")[0]
60
+ if syn in synsets:
61
+ files.append(rpath)
62
+ return files
63
+ else:
64
+ return relpaths
65
+
66
+ def _prepare_synset_to_human(self):
67
+ SIZE = 2655750
68
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
69
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
70
+ if (not os.path.exists(self.human_dict) or
71
+ not os.path.getsize(self.human_dict)==SIZE):
72
+ download(URL, self.human_dict)
73
+
74
+ def _prepare_idx_to_synset(self):
75
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
76
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
77
+ if (not os.path.exists(self.idx2syn)):
78
+ download(URL, self.idx2syn)
79
+
80
+ def _prepare_human_to_integer_label(self):
81
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
82
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
83
+ if (not os.path.exists(self.human2integer)):
84
+ download(URL, self.human2integer)
85
+ with open(self.human2integer, "r") as f:
86
+ lines = f.read().splitlines()
87
+ assert len(lines) == 1000
88
+ self.human2integer_dict = dict()
89
+ for line in lines:
90
+ value, key = line.split(":")
91
+ self.human2integer_dict[key] = int(value)
92
+
93
+ def _load(self):
94
+ with open(self.txt_filelist, "r") as f:
95
+ self.relpaths = f.read().splitlines()
96
+ l1 = len(self.relpaths)
97
+ self.relpaths = self._filter_relpaths(self.relpaths)
98
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
99
+
100
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
101
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
102
+
103
+ unique_synsets = np.unique(self.synsets)
104
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
105
+ if not self.keep_orig_class_label:
106
+ self.class_labels = [class_dict[s] for s in self.synsets]
107
+ else:
108
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
109
+
110
+ with open(self.human_dict, "r") as f:
111
+ human_dict = f.read().splitlines()
112
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
113
+
114
+ self.human_labels = [human_dict[s] for s in self.synsets]
115
+
116
+ labels = {
117
+ "relpath": np.array(self.relpaths),
118
+ "synsets": np.array(self.synsets),
119
+ "class_label": np.array(self.class_labels),
120
+ "human_label": np.array(self.human_labels),
121
+ }
122
+
123
+ if self.process_images:
124
+ self.size = retrieve(self.config, "size", default=256)
125
+ self.data = ImagePaths(self.abspaths,
126
+ labels=labels,
127
+ size=self.size,
128
+ random_crop=self.random_crop,
129
+ )
130
+ else:
131
+ self.data = self.abspaths
132
+
133
+
134
+ class ImageNetTrain(ImageNetBase):
135
+ NAME = "ILSVRC2012_train"
136
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
137
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
138
+ FILES = [
139
+ "ILSVRC2012_img_train.tar",
140
+ ]
141
+ SIZES = [
142
+ 147897477120,
143
+ ]
144
+
145
+ def __init__(self, process_images=True, data_root=None, **kwargs):
146
+ self.process_images = process_images
147
+ self.data_root = data_root
148
+ super().__init__(**kwargs)
149
+
150
+ def _prepare(self):
151
+ if self.data_root:
152
+ self.root = os.path.join(self.data_root, self.NAME)
153
+ else:
154
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
155
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
156
+
157
+ self.datadir = os.path.join(self.root, "data")
158
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
159
+ self.expected_length = 1281167
160
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
161
+ default=True)
162
+ if not tdu.is_prepared(self.root):
163
+ # prep
164
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
165
+
166
+ datadir = self.datadir
167
+ if not os.path.exists(datadir):
168
+ path = os.path.join(self.root, self.FILES[0])
169
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
170
+ import academictorrents as at
171
+ atpath = at.get(self.AT_HASH, datastore=self.root)
172
+ assert atpath == path
173
+
174
+ print("Extracting {} to {}".format(path, datadir))
175
+ os.makedirs(datadir, exist_ok=True)
176
+ with tarfile.open(path, "r:") as tar:
177
+ tar.extractall(path=datadir)
178
+
179
+ print("Extracting sub-tars.")
180
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
181
+ for subpath in tqdm(subpaths):
182
+ subdir = subpath[:-len(".tar")]
183
+ os.makedirs(subdir, exist_ok=True)
184
+ with tarfile.open(subpath, "r:") as tar:
185
+ tar.extractall(path=subdir)
186
+
187
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
188
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
189
+ filelist = sorted(filelist)
190
+ filelist = "\n".join(filelist)+"\n"
191
+ with open(self.txt_filelist, "w") as f:
192
+ f.write(filelist)
193
+
194
+ tdu.mark_prepared(self.root)
195
+
196
+
197
+ class ImageNetValidation(ImageNetBase):
198
+ NAME = "ILSVRC2012_validation"
199
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
200
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
201
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
202
+ FILES = [
203
+ "ILSVRC2012_img_val.tar",
204
+ "validation_synset.txt",
205
+ ]
206
+ SIZES = [
207
+ 6744924160,
208
+ 1950000,
209
+ ]
210
+
211
+ def __init__(self, process_images=True, data_root=None, **kwargs):
212
+ self.data_root = data_root
213
+ self.process_images = process_images
214
+ super().__init__(**kwargs)
215
+
216
+ def _prepare(self):
217
+ if self.data_root:
218
+ self.root = os.path.join(self.data_root, self.NAME)
219
+ else:
220
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
221
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
222
+ self.datadir = os.path.join(self.root, "data")
223
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
224
+ self.expected_length = 50000
225
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
226
+ default=False)
227
+ if not tdu.is_prepared(self.root):
228
+ # prep
229
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
230
+
231
+ datadir = self.datadir
232
+ if not os.path.exists(datadir):
233
+ path = os.path.join(self.root, self.FILES[0])
234
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
235
+ import academictorrents as at
236
+ atpath = at.get(self.AT_HASH, datastore=self.root)
237
+ assert atpath == path
238
+
239
+ print("Extracting {} to {}".format(path, datadir))
240
+ os.makedirs(datadir, exist_ok=True)
241
+ with tarfile.open(path, "r:") as tar:
242
+ tar.extractall(path=datadir)
243
+
244
+ vspath = os.path.join(self.root, self.FILES[1])
245
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
246
+ download(self.VS_URL, vspath)
247
+
248
+ with open(vspath, "r") as f:
249
+ synset_dict = f.read().splitlines()
250
+ synset_dict = dict(line.split() for line in synset_dict)
251
+
252
+ print("Reorganizing into synset folders")
253
+ synsets = np.unique(list(synset_dict.values()))
254
+ for s in synsets:
255
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
256
+ for k, v in synset_dict.items():
257
+ src = os.path.join(datadir, k)
258
+ dst = os.path.join(datadir, v)
259
+ shutil.move(src, dst)
260
+
261
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
262
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
263
+ filelist = sorted(filelist)
264
+ filelist = "\n".join(filelist)+"\n"
265
+ with open(self.txt_filelist, "w") as f:
266
+ f.write(filelist)
267
+
268
+ tdu.mark_prepared(self.root)
269
+
270
+
271
+
272
+ class ImageNetSR(Dataset):
273
+ def __init__(self, size=None,
274
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
275
+ random_crop=True):
276
+ """
277
+ Imagenet Superresolution Dataloader
278
+ Performs following ops in order:
279
+ 1. crops a crop of size s from image either as random or center crop
280
+ 2. resizes crop to size with cv2.area_interpolation
281
+ 3. degrades resized crop with degradation_fn
282
+
283
+ :param size: resizing to size after cropping
284
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
285
+ :param downscale_f: Low Resolution Downsample factor
286
+ :param min_crop_f: determines crop size s,
287
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
288
+ :param max_crop_f: ""
289
+ :param data_root:
290
+ :param random_crop:
291
+ """
292
+ self.base = self.get_base()
293
+ assert size
294
+ assert (size / downscale_f).is_integer()
295
+ self.size = size
296
+ self.LR_size = int(size / downscale_f)
297
+ self.min_crop_f = min_crop_f
298
+ self.max_crop_f = max_crop_f
299
+ assert(max_crop_f <= 1.)
300
+ self.center_crop = not random_crop
301
+
302
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
303
+
304
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
305
+
306
+ if degradation == "bsrgan":
307
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
308
+
309
+ elif degradation == "bsrgan_light":
310
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
311
+
312
+ else:
313
+ interpolation_fn = {
314
+ "cv_nearest": cv2.INTER_NEAREST,
315
+ "cv_bilinear": cv2.INTER_LINEAR,
316
+ "cv_bicubic": cv2.INTER_CUBIC,
317
+ "cv_area": cv2.INTER_AREA,
318
+ "cv_lanczos": cv2.INTER_LANCZOS4,
319
+ "pil_nearest": PIL.Image.NEAREST,
320
+ "pil_bilinear": PIL.Image.BILINEAR,
321
+ "pil_bicubic": PIL.Image.BICUBIC,
322
+ "pil_box": PIL.Image.BOX,
323
+ "pil_hamming": PIL.Image.HAMMING,
324
+ "pil_lanczos": PIL.Image.LANCZOS,
325
+ }[degradation]
326
+
327
+ self.pil_interpolation = degradation.startswith("pil_")
328
+
329
+ if self.pil_interpolation:
330
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
331
+
332
+ else:
333
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
334
+ interpolation=interpolation_fn)
335
+
336
+ def __len__(self):
337
+ return len(self.base)
338
+
339
+ def __getitem__(self, i):
340
+ example = self.base[i]
341
+ image = Image.open(example["file_path_"])
342
+
343
+ if not image.mode == "RGB":
344
+ image = image.convert("RGB")
345
+
346
+ image = np.array(image).astype(np.uint8)
347
+
348
+ min_side_len = min(image.shape[:2])
349
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
350
+ crop_side_len = int(crop_side_len)
351
+
352
+ if self.center_crop:
353
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
354
+
355
+ else:
356
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
357
+
358
+ image = self.cropper(image=image)["image"]
359
+ image = self.image_rescaler(image=image)["image"]
360
+
361
+ if self.pil_interpolation:
362
+ image_pil = PIL.Image.fromarray(image)
363
+ LR_image = self.degradation_process(image_pil)
364
+ LR_image = np.array(LR_image).astype(np.uint8)
365
+
366
+ else:
367
+ LR_image = self.degradation_process(image=image)["image"]
368
+
369
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
370
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
371
+ example["caption"] = example["human_label"] # dummy caption
372
+ return example
373
+
374
+
375
+ class ImageNetSRTrain(ImageNetSR):
376
+ def __init__(self, **kwargs):
377
+ super().__init__(**kwargs)
378
+
379
+ def get_base(self):
380
+ with open("data/imagenet_train_hr_indices.p", "rb") as f:
381
+ indices = pickle.load(f)
382
+ dset = ImageNetTrain(process_images=False,)
383
+ return Subset(dset, indices)
384
+
385
+
386
+ class ImageNetSRValidation(ImageNetSR):
387
+ def __init__(self, **kwargs):
388
+ super().__init__(**kwargs)
389
+
390
+ def get_base(self):
391
+ with open("data/imagenet_val_hr_indices.p", "rb") as f:
392
+ indices = pickle.load(f)
393
+ dset = ImageNetValidation(process_images=False,)
394
+ return Subset(dset, indices)
ldm/data/inpainting/__init__.py ADDED
File without changes
ldm/data/inpainting/synthetic_mask.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageDraw
2
+ import numpy as np
3
+
4
+ settings = {
5
+ "256narrow": {
6
+ "p_irr": 1,
7
+ "min_n_irr": 4,
8
+ "max_n_irr": 50,
9
+ "max_l_irr": 40,
10
+ "max_w_irr": 10,
11
+ "min_n_box": None,
12
+ "max_n_box": None,
13
+ "min_s_box": None,
14
+ "max_s_box": None,
15
+ "marg": None,
16
+ },
17
+ "256train": {
18
+ "p_irr": 0.5,
19
+ "min_n_irr": 1,
20
+ "max_n_irr": 5,
21
+ "max_l_irr": 200,
22
+ "max_w_irr": 100,
23
+ "min_n_box": 1,
24
+ "max_n_box": 4,
25
+ "min_s_box": 30,
26
+ "max_s_box": 150,
27
+ "marg": 10,
28
+ },
29
+ "512train": { # TODO: experimental
30
+ "p_irr": 0.5,
31
+ "min_n_irr": 1,
32
+ "max_n_irr": 5,
33
+ "max_l_irr": 450,
34
+ "max_w_irr": 250,
35
+ "min_n_box": 1,
36
+ "max_n_box": 4,
37
+ "min_s_box": 30,
38
+ "max_s_box": 300,
39
+ "marg": 10,
40
+ },
41
+ "512train-large": { # TODO: experimental
42
+ "p_irr": 0.5,
43
+ "min_n_irr": 1,
44
+ "max_n_irr": 5,
45
+ "max_l_irr": 450,
46
+ "max_w_irr": 400,
47
+ "min_n_box": 1,
48
+ "max_n_box": 4,
49
+ "min_s_box": 75,
50
+ "max_s_box": 450,
51
+ "marg": 10,
52
+ },
53
+ }
54
+
55
+
56
+ def gen_segment_mask(mask, start, end, brush_width):
57
+ mask = mask > 0
58
+ mask = (255 * mask).astype(np.uint8)
59
+ mask = Image.fromarray(mask)
60
+ draw = ImageDraw.Draw(mask)
61
+ draw.line([start, end], fill=255, width=brush_width, joint="curve")
62
+ mask = np.array(mask) / 255
63
+ return mask
64
+
65
+
66
+ def gen_box_mask(mask, masked):
67
+ x_0, y_0, w, h = masked
68
+ mask[y_0:y_0 + h, x_0:x_0 + w] = 1
69
+ return mask
70
+
71
+
72
+ def gen_round_mask(mask, masked, radius):
73
+ x_0, y_0, w, h = masked
74
+ xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
75
+
76
+ mask = mask > 0
77
+ mask = (255 * mask).astype(np.uint8)
78
+ mask = Image.fromarray(mask)
79
+ draw = ImageDraw.Draw(mask)
80
+ draw.rounded_rectangle(xy, radius=radius, fill=255)
81
+ mask = np.array(mask) / 255
82
+ return mask
83
+
84
+
85
+ def gen_large_mask(prng, img_h, img_w,
86
+ marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
87
+ min_n_box, max_n_box, min_s_box, max_s_box):
88
+ """
89
+ img_h: int, an image height
90
+ img_w: int, an image width
91
+ marg: int, a margin for a box starting coordinate
92
+ p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
93
+
94
+ min_n_irr: int, min number of segments
95
+ max_n_irr: int, max number of segments
96
+ max_l_irr: max length of a segment in polygonal chain
97
+ max_w_irr: max width of a segment in polygonal chain
98
+
99
+ min_n_box: int, min bound for the number of box primitives
100
+ max_n_box: int, max bound for the number of box primitives
101
+ min_s_box: int, min length of a box side
102
+ max_s_box: int, max length of a box side
103
+ """
104
+
105
+ mask = np.zeros((img_h, img_w))
106
+ uniform = prng.randint
107
+
108
+ if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
109
+ n = uniform(min_n_irr, max_n_irr) # sample number of segments
110
+
111
+ for _ in range(n):
112
+ y = uniform(0, img_h) # sample a starting point
113
+ x = uniform(0, img_w)
114
+
115
+ a = uniform(0, 360) # sample angle
116
+ l = uniform(10, max_l_irr) # sample segment length
117
+ w = uniform(5, max_w_irr) # sample a segment width
118
+
119
+ # draw segment starting from (x,y) to (x_,y_) using brush of width w
120
+ x_ = x + l * np.sin(a)
121
+ y_ = y + l * np.cos(a)
122
+
123
+ mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
124
+ x, y = x_, y_
125
+ else: # generate Box masks
126
+ n = uniform(min_n_box, max_n_box) # sample number of rectangles
127
+
128
+ for _ in range(n):
129
+ h = uniform(min_s_box, max_s_box) # sample box shape
130
+ w = uniform(min_s_box, max_s_box)
131
+
132
+ x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
133
+ y_0 = uniform(marg, img_h - marg - h)
134
+
135
+ if np.random.uniform(0, 1) < 0.5:
136
+ mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
137
+ else:
138
+ r = uniform(0, 60) # sample radius
139
+ mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
140
+ return mask
141
+
142
+
143
+ make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
144
+ make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
145
+ make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
146
+ make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
147
+
148
+
149
+ MASK_MODES = {
150
+ "256train": make_lama_mask,
151
+ "256narrow": make_narrow_lama_mask,
152
+ "512train": make_512_lama_mask,
153
+ "512train-large": make_512_lama_mask_large
154
+ }
155
+
156
+ if __name__ == "__main__":
157
+ import sys
158
+
159
+ out = sys.argv[1]
160
+
161
+ prng = np.random.RandomState(1)
162
+ kwargs = settings["256train"]
163
+ mask = gen_large_mask(prng, 256, 256, **kwargs)
164
+ mask = (255 * mask).astype(np.uint8)
165
+ mask = Image.fromarray(mask)
166
+ mask.save(out)
ldm/data/laion.py ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import webdataset as wds
2
+ import kornia
3
+ from PIL import Image
4
+ import io
5
+ import os
6
+ import torchvision
7
+ from PIL import Image
8
+ import glob
9
+ import random
10
+ import numpy as np
11
+ import pytorch_lightning as pl
12
+ from tqdm import tqdm
13
+ from omegaconf import OmegaConf
14
+ from einops import rearrange
15
+ import torch
16
+ from webdataset.handlers import warn_and_continue
17
+
18
+
19
+ from ldm.util import instantiate_from_config
20
+ from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
21
+ from ldm.data.base import PRNGMixin
22
+
23
+
24
+ class DataWithWings(torch.utils.data.IterableDataset):
25
+ def __init__(self, min_size, transform=None, target_transform=None):
26
+ self.min_size = min_size
27
+ self.transform = transform if transform is not None else nn.Identity()
28
+ self.target_transform = target_transform if target_transform is not None else nn.Identity()
29
+ self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
30
+ self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
31
+ self.pwatermark_threshold = 0.8
32
+ self.punsafe_threshold = 0.5
33
+ self.aesthetic_threshold = 5.
34
+ self.total_samples = 0
35
+ self.samples = 0
36
+ location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
37
+
38
+ self.inner_dataset = wds.DataPipeline(
39
+ wds.ResampledShards(location),
40
+ wds.tarfile_to_samples(handler=wds.warn_and_continue),
41
+ wds.shuffle(1000, handler=wds.warn_and_continue),
42
+ wds.decode('pilrgb', handler=wds.warn_and_continue),
43
+ wds.map(self._add_tags, handler=wds.ignore_and_continue),
44
+ wds.select(self._filter_predicate),
45
+ wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
46
+ wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
47
+ )
48
+
49
+ @staticmethod
50
+ def _compute_hash(url, text):
51
+ if url is None:
52
+ url = ''
53
+ if text is None:
54
+ text = ''
55
+ total = (url + text).encode('utf-8')
56
+ return mmh3.hash64(total)[0]
57
+
58
+ def _add_tags(self, x):
59
+ hsh = self._compute_hash(x['json']['url'], x['txt'])
60
+ pwatermark, punsafe = self.kv[hsh]
61
+ aesthetic = self.kv_aesthetic[hsh][0]
62
+ return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
63
+
64
+ def _punsafe_to_class(self, punsafe):
65
+ return torch.tensor(punsafe >= self.punsafe_threshold).long()
66
+
67
+ def _filter_predicate(self, x):
68
+ try:
69
+ return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
70
+ except:
71
+ return False
72
+
73
+ def __iter__(self):
74
+ return iter(self.inner_dataset)
75
+
76
+
77
+ def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
78
+ """Take a list of samples (as dictionary) and create a batch, preserving the keys.
79
+ If `tensors` is True, `ndarray` objects are combined into
80
+ tensor batches.
81
+ :param dict samples: list of samples
82
+ :param bool tensors: whether to turn lists of ndarrays into a single ndarray
83
+ :returns: single sample consisting of a batch
84
+ :rtype: dict
85
+ """
86
+ keys = set.intersection(*[set(sample.keys()) for sample in samples])
87
+ batched = {key: [] for key in keys}
88
+
89
+ for s in samples:
90
+ [batched[key].append(s[key]) for key in batched]
91
+
92
+ result = {}
93
+ for key in batched:
94
+ if isinstance(batched[key][0], (int, float)):
95
+ if combine_scalars:
96
+ result[key] = np.array(list(batched[key]))
97
+ elif isinstance(batched[key][0], torch.Tensor):
98
+ if combine_tensors:
99
+ result[key] = torch.stack(list(batched[key]))
100
+ elif isinstance(batched[key][0], np.ndarray):
101
+ if combine_tensors:
102
+ result[key] = np.array(list(batched[key]))
103
+ else:
104
+ result[key] = list(batched[key])
105
+ return result
106
+
107
+
108
+ class WebDataModuleFromConfig(pl.LightningDataModule):
109
+ def __init__(self, tar_base, batch_size, train=None, validation=None,
110
+ test=None, num_workers=4, multinode=True, min_size=None,
111
+ max_pwatermark=1.0,
112
+ **kwargs):
113
+ super().__init__(self)
114
+ print(f'Setting tar base to {tar_base}')
115
+ self.tar_base = tar_base
116
+ self.batch_size = batch_size
117
+ self.num_workers = num_workers
118
+ self.train = train
119
+ self.validation = validation
120
+ self.test = test
121
+ self.multinode = multinode
122
+ self.min_size = min_size # filter out very small images
123
+ self.max_pwatermark = max_pwatermark # filter out watermarked images
124
+
125
+ def make_loader(self, dataset_config, train=True):
126
+ if 'image_transforms' in dataset_config:
127
+ image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
128
+ else:
129
+ image_transforms = []
130
+
131
+ image_transforms.extend([torchvision.transforms.ToTensor(),
132
+ torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
133
+ image_transforms = torchvision.transforms.Compose(image_transforms)
134
+
135
+ if 'transforms' in dataset_config:
136
+ transforms_config = OmegaConf.to_container(dataset_config.transforms)
137
+ else:
138
+ transforms_config = dict()
139
+
140
+ transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
141
+ if transforms_config[dkey] != 'identity' else identity
142
+ for dkey in transforms_config}
143
+ img_key = dataset_config.get('image_key', 'jpeg')
144
+ transform_dict.update({img_key: image_transforms})
145
+
146
+ if 'postprocess' in dataset_config:
147
+ postprocess = instantiate_from_config(dataset_config['postprocess'])
148
+ else:
149
+ postprocess = None
150
+
151
+ shuffle = dataset_config.get('shuffle', 0)
152
+ shardshuffle = shuffle > 0
153
+
154
+ nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
155
+
156
+ if self.tar_base == "__improvedaesthetic__":
157
+ print("## Warning, loading the same improved aesthetic dataset "
158
+ "for all splits and ignoring shards parameter.")
159
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
160
+ else:
161
+ tars = os.path.join(self.tar_base, dataset_config.shards)
162
+
163
+ dset = wds.WebDataset(
164
+ tars,
165
+ nodesplitter=nodesplitter,
166
+ shardshuffle=shardshuffle,
167
+ handler=wds.warn_and_continue).repeat().shuffle(shuffle)
168
+ print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
169
+
170
+ dset = (dset
171
+ .select(self.filter_keys)
172
+ .decode('pil', handler=wds.warn_and_continue)
173
+ .select(self.filter_size)
174
+ .map_dict(**transform_dict, handler=wds.warn_and_continue)
175
+ )
176
+ if postprocess is not None:
177
+ dset = dset.map(postprocess)
178
+ dset = (dset
179
+ .batched(self.batch_size, partial=False,
180
+ collation_fn=dict_collation_fn)
181
+ )
182
+
183
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
184
+ num_workers=self.num_workers)
185
+
186
+ return loader
187
+
188
+ def filter_size(self, x):
189
+ try:
190
+ valid = True
191
+ if self.min_size is not None and self.min_size > 1:
192
+ try:
193
+ valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
194
+ except Exception:
195
+ valid = False
196
+ if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
197
+ try:
198
+ valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
199
+ except Exception:
200
+ valid = False
201
+ return valid
202
+ except Exception:
203
+ return False
204
+
205
+ def filter_keys(self, x):
206
+ try:
207
+ return ("jpg" in x) and ("txt" in x)
208
+ except Exception:
209
+ return False
210
+
211
+ def train_dataloader(self):
212
+ return self.make_loader(self.train)
213
+
214
+ def val_dataloader(self):
215
+ return self.make_loader(self.validation, train=False)
216
+
217
+ def test_dataloader(self):
218
+ return self.make_loader(self.test, train=False)
219
+
220
+
221
+ from ldm.modules.image_degradation import degradation_fn_bsr_light
222
+ import cv2
223
+
224
+ class AddLR(object):
225
+ def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
226
+ self.factor = factor
227
+ self.output_size = output_size
228
+ self.image_key = image_key
229
+ self.initial_size = initial_size
230
+
231
+ def pt2np(self, x):
232
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
233
+ return x
234
+
235
+ def np2pt(self, x):
236
+ x = torch.from_numpy(x)/127.5-1.0
237
+ return x
238
+
239
+ def __call__(self, sample):
240
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
241
+ x = self.pt2np(sample[self.image_key])
242
+ if self.initial_size is not None:
243
+ x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
244
+ x = degradation_fn_bsr_light(x, sf=self.factor)['image']
245
+ x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
246
+ x = self.np2pt(x)
247
+ sample['lr'] = x
248
+ return sample
249
+
250
+ class AddBW(object):
251
+ def __init__(self, image_key="jpg"):
252
+ self.image_key = image_key
253
+
254
+ def pt2np(self, x):
255
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
256
+ return x
257
+
258
+ def np2pt(self, x):
259
+ x = torch.from_numpy(x)/127.5-1.0
260
+ return x
261
+
262
+ def __call__(self, sample):
263
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
264
+ x = sample[self.image_key]
265
+ w = torch.rand(3, device=x.device)
266
+ w /= w.sum()
267
+ out = torch.einsum('hwc,c->hw', x, w)
268
+
269
+ # Keep as 3ch so we can pass to encoder, also we might want to add hints
270
+ sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
271
+ return sample
272
+
273
+ class AddMask(PRNGMixin):
274
+ def __init__(self, mode="512train", p_drop=0.):
275
+ super().__init__()
276
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
277
+ self.make_mask = MASK_MODES[mode]
278
+ self.p_drop = p_drop
279
+
280
+ def __call__(self, sample):
281
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
282
+ x = sample['jpg']
283
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
284
+ if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
285
+ mask = np.ones_like(mask)
286
+ mask[mask < 0.5] = 0
287
+ mask[mask > 0.5] = 1
288
+ mask = torch.from_numpy(mask[..., None])
289
+ sample['mask'] = mask
290
+ sample['masked_image'] = x * (mask < 0.5)
291
+ return sample
292
+
293
+
294
+ class AddEdge(PRNGMixin):
295
+ def __init__(self, mode="512train", mask_edges=True):
296
+ super().__init__()
297
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
298
+ self.make_mask = MASK_MODES[mode]
299
+ self.n_down_choices = [0]
300
+ self.sigma_choices = [1, 2]
301
+ self.mask_edges = mask_edges
302
+
303
+ @torch.no_grad()
304
+ def __call__(self, sample):
305
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
306
+ x = sample['jpg']
307
+
308
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
309
+ mask[mask < 0.5] = 0
310
+ mask[mask > 0.5] = 1
311
+ mask = torch.from_numpy(mask[..., None])
312
+ sample['mask'] = mask
313
+
314
+ n_down_idx = self.prng.choice(len(self.n_down_choices))
315
+ sigma_idx = self.prng.choice(len(self.sigma_choices))
316
+
317
+ n_choices = len(self.n_down_choices)*len(self.sigma_choices)
318
+ raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
319
+ (len(self.n_down_choices), len(self.sigma_choices)))
320
+ normalized_idx = raveled_idx/max(1, n_choices-1)
321
+
322
+ n_down = self.n_down_choices[n_down_idx]
323
+ sigma = self.sigma_choices[sigma_idx]
324
+
325
+ kernel_size = 4*sigma+1
326
+ kernel_size = (kernel_size, kernel_size)
327
+ sigma = (sigma, sigma)
328
+ canny = kornia.filters.Canny(
329
+ low_threshold=0.1,
330
+ high_threshold=0.2,
331
+ kernel_size=kernel_size,
332
+ sigma=sigma,
333
+ hysteresis=True,
334
+ )
335
+ y = (x+1.0)/2.0 # in 01
336
+ y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
337
+
338
+ # down
339
+ for i_down in range(n_down):
340
+ size = min(y.shape[-2], y.shape[-1])//2
341
+ y = kornia.geometry.transform.resize(y, size, antialias=True)
342
+
343
+ # edge
344
+ _, y = canny(y)
345
+
346
+ if n_down > 0:
347
+ size = x.shape[0], x.shape[1]
348
+ y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
349
+
350
+ y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
351
+ y = y*2.0-1.0
352
+
353
+ if self.mask_edges:
354
+ sample['masked_image'] = y * (mask < 0.5)
355
+ else:
356
+ sample['masked_image'] = y
357
+ sample['mask'] = torch.zeros_like(sample['mask'])
358
+
359
+ # concat normalized idx
360
+ sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
361
+
362
+ return sample
363
+
364
+
365
+ def example00():
366
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
367
+ dataset = wds.WebDataset(url)
368
+ example = next(iter(dataset))
369
+ for k in example:
370
+ print(k, type(example[k]))
371
+
372
+ print(example["__key__"])
373
+ for k in ["json", "txt"]:
374
+ print(example[k].decode())
375
+
376
+ image = Image.open(io.BytesIO(example["jpg"]))
377
+ outdir = "tmp"
378
+ os.makedirs(outdir, exist_ok=True)
379
+ image.save(os.path.join(outdir, example["__key__"] + ".png"))
380
+
381
+
382
+ def load_example(example):
383
+ return {
384
+ "key": example["__key__"],
385
+ "image": Image.open(io.BytesIO(example["jpg"])),
386
+ "text": example["txt"].decode(),
387
+ }
388
+
389
+
390
+ for i, example in tqdm(enumerate(dataset)):
391
+ ex = load_example(example)
392
+ print(ex["image"].size, ex["text"])
393
+ if i >= 100:
394
+ break
395
+
396
+
397
+ def example01():
398
+ # the first laion shards contain ~10k examples each
399
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
400
+
401
+ batch_size = 3
402
+ shuffle_buffer = 10000
403
+ dset = wds.WebDataset(
404
+ url,
405
+ nodesplitter=wds.shardlists.split_by_node,
406
+ shardshuffle=True,
407
+ )
408
+ dset = (dset
409
+ .shuffle(shuffle_buffer, initial=shuffle_buffer)
410
+ .decode('pil', handler=warn_and_continue)
411
+ .batched(batch_size, partial=False,
412
+ collation_fn=dict_collation_fn)
413
+ )
414
+
415
+ num_workers = 2
416
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
417
+
418
+ batch_sizes = list()
419
+ keys_per_epoch = list()
420
+ for epoch in range(5):
421
+ keys = list()
422
+ for batch in tqdm(loader):
423
+ batch_sizes.append(len(batch["__key__"]))
424
+ keys.append(batch["__key__"])
425
+
426
+ for bs in batch_sizes:
427
+ assert bs==batch_size
428
+ print(f"{len(batch_sizes)} batches of size {batch_size}.")
429
+ batch_sizes = list()
430
+
431
+ keys_per_epoch.append(keys)
432
+ for i_batch in [0, 1, -1]:
433
+ print(f"Batch {i_batch} of epoch {epoch}:")
434
+ print(keys[i_batch])
435
+ print("next epoch.")
436
+
437
+
438
+ def example02():
439
+ from omegaconf import OmegaConf
440
+ from torch.utils.data.distributed import DistributedSampler
441
+ from torch.utils.data import IterableDataset
442
+ from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
443
+ from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
444
+
445
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
446
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
447
+ config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
448
+ datamod = WebDataModuleFromConfig(**config["data"]["params"])
449
+ dataloader = datamod.train_dataloader()
450
+
451
+ for batch in dataloader:
452
+ print(batch.keys())
453
+ print(batch["jpg"].shape)
454
+ break
455
+
456
+
457
+ def example03():
458
+ # improved aesthetics
459
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
460
+ dataset = wds.WebDataset(tars)
461
+
462
+ def filter_keys(x):
463
+ try:
464
+ return ("jpg" in x) and ("txt" in x)
465
+ except Exception:
466
+ return False
467
+
468
+ def filter_size(x):
469
+ try:
470
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
471
+ except Exception:
472
+ return False
473
+
474
+ def filter_watermark(x):
475
+ try:
476
+ return x['json']['pwatermark'] < 0.5
477
+ except Exception:
478
+ return False
479
+
480
+ dataset = (dataset
481
+ .select(filter_keys)
482
+ .decode('pil', handler=wds.warn_and_continue))
483
+ n_save = 20
484
+ n_total = 0
485
+ n_large = 0
486
+ n_large_nowm = 0
487
+ for i, example in enumerate(dataset):
488
+ n_total += 1
489
+ if filter_size(example):
490
+ n_large += 1
491
+ if filter_watermark(example):
492
+ n_large_nowm += 1
493
+ if n_large_nowm < n_save+1:
494
+ image = example["jpg"]
495
+ image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
496
+
497
+ if i%500 == 0:
498
+ print(i)
499
+ print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
500
+ if n_large > 0:
501
+ print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
502
+
503
+
504
+
505
+ def example04():
506
+ # improved aesthetics
507
+ for i_shard in range(60208)[::-1]:
508
+ print(i_shard)
509
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
510
+ dataset = wds.WebDataset(tars)
511
+
512
+ def filter_keys(x):
513
+ try:
514
+ return ("jpg" in x) and ("txt" in x)
515
+ except Exception:
516
+ return False
517
+
518
+ def filter_size(x):
519
+ try:
520
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
521
+ except Exception:
522
+ return False
523
+
524
+ dataset = (dataset
525
+ .select(filter_keys)
526
+ .decode('pil', handler=wds.warn_and_continue))
527
+ try:
528
+ example = next(iter(dataset))
529
+ except Exception:
530
+ print(f"Error @ {i_shard}")
531
+
532
+
533
+ if __name__ == "__main__":
534
+ #example01()
535
+ #example02()
536
+ example03()
537
+ #example04()
ldm/data/lsun.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import PIL
4
+ from PIL import Image
5
+ from torch.utils.data import Dataset
6
+ from torchvision import transforms
7
+
8
+
9
+ class LSUNBase(Dataset):
10
+ def __init__(self,
11
+ txt_file,
12
+ data_root,
13
+ size=None,
14
+ interpolation="bicubic",
15
+ flip_p=0.5
16
+ ):
17
+ self.data_paths = txt_file
18
+ self.data_root = data_root
19
+ with open(self.data_paths, "r") as f:
20
+ self.image_paths = f.read().splitlines()
21
+ self._length = len(self.image_paths)
22
+ self.labels = {
23
+ "relative_file_path_": [l for l in self.image_paths],
24
+ "file_path_": [os.path.join(self.data_root, l)
25
+ for l in self.image_paths],
26
+ }
27
+
28
+ self.size = size
29
+ self.interpolation = {"linear": PIL.Image.LINEAR,
30
+ "bilinear": PIL.Image.BILINEAR,
31
+ "bicubic": PIL.Image.BICUBIC,
32
+ "lanczos": PIL.Image.LANCZOS,
33
+ }[interpolation]
34
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
35
+
36
+ def __len__(self):
37
+ return self._length
38
+
39
+ def __getitem__(self, i):
40
+ example = dict((k, self.labels[k][i]) for k in self.labels)
41
+ image = Image.open(example["file_path_"])
42
+ if not image.mode == "RGB":
43
+ image = image.convert("RGB")
44
+
45
+ # default to score-sde preprocessing
46
+ img = np.array(image).astype(np.uint8)
47
+ crop = min(img.shape[0], img.shape[1])
48
+ h, w, = img.shape[0], img.shape[1]
49
+ img = img[(h - crop) // 2:(h + crop) // 2,
50
+ (w - crop) // 2:(w + crop) // 2]
51
+
52
+ image = Image.fromarray(img)
53
+ if self.size is not None:
54
+ image = image.resize((self.size, self.size), resample=self.interpolation)
55
+
56
+ image = self.flip(image)
57
+ image = np.array(image).astype(np.uint8)
58
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
59
+ return example
60
+
61
+
62
+ class LSUNChurchesTrain(LSUNBase):
63
+ def __init__(self, **kwargs):
64
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
65
+
66
+
67
+ class LSUNChurchesValidation(LSUNBase):
68
+ def __init__(self, flip_p=0., **kwargs):
69
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
70
+ flip_p=flip_p, **kwargs)
71
+
72
+
73
+ class LSUNBedroomsTrain(LSUNBase):
74
+ def __init__(self, **kwargs):
75
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
76
+
77
+
78
+ class LSUNBedroomsValidation(LSUNBase):
79
+ def __init__(self, flip_p=0.0, **kwargs):
80
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
81
+ flip_p=flip_p, **kwargs)
82
+
83
+
84
+ class LSUNCatsTrain(LSUNBase):
85
+ def __init__(self, **kwargs):
86
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
87
+
88
+
89
+ class LSUNCatsValidation(LSUNBase):
90
+ def __init__(self, flip_p=0., **kwargs):
91
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
92
+ flip_p=flip_p, **kwargs)
ldm/data/nerf_like.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data import Dataset
2
+ import os
3
+ import json
4
+ import numpy as np
5
+ import torch
6
+ import imageio
7
+ import math
8
+ import cv2
9
+ from torchvision import transforms
10
+
11
+ def cartesian_to_spherical(xyz):
12
+ ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
13
+ xy = xyz[:,0]**2 + xyz[:,1]**2
14
+ z = np.sqrt(xy + xyz[:,2]**2)
15
+ theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
16
+ #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
17
+ azimuth = np.arctan2(xyz[:,1], xyz[:,0])
18
+ return np.array([theta, azimuth, z])
19
+
20
+
21
+ def get_T(T_target, T_cond):
22
+ theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
23
+ theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
24
+
25
+ d_theta = theta_target - theta_cond
26
+ d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
27
+ d_z = z_target - z_cond
28
+
29
+ d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
30
+ return d_T
31
+
32
+ def get_spherical(T_target, T_cond):
33
+ theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
34
+ theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
35
+
36
+ d_theta = theta_target - theta_cond
37
+ d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
38
+ d_z = z_target - z_cond
39
+
40
+ d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()])
41
+ return d_T
42
+
43
+ class RTMV(Dataset):
44
+ def __init__(self, root_dir='datasets/RTMV/google_scanned',\
45
+ first_K=64, resolution=256, load_target=False):
46
+ self.root_dir = root_dir
47
+ self.scene_list = sorted(next(os.walk(root_dir))[1])
48
+ self.resolution = resolution
49
+ self.first_K = first_K
50
+ self.load_target = load_target
51
+
52
+ def __len__(self):
53
+ return len(self.scene_list)
54
+
55
+ def __getitem__(self, idx):
56
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
57
+ with open(os.path.join(scene_dir, 'transforms.json'), "r") as f:
58
+ meta = json.load(f)
59
+ imgs = []
60
+ poses = []
61
+ for i_img in range(self.first_K):
62
+ meta_img = meta['frames'][i_img]
63
+
64
+ if i_img == 0 or self.load_target:
65
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
66
+ img = imageio.imread(img_path)
67
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
68
+ imgs.append(img)
69
+
70
+ c2w = meta_img['transform_matrix']
71
+ poses.append(c2w)
72
+
73
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
74
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
75
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
76
+ poses = torch.tensor(np.array(poses).astype(np.float32))
77
+ return imgs, poses
78
+
79
+ def blend_rgba(self, img):
80
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
81
+ return img
82
+
83
+
84
+ class GSO(Dataset):
85
+ def __init__(self, root_dir='datasets/GoogleScannedObjects',\
86
+ split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'):
87
+ self.root_dir = root_dir
88
+ with open(os.path.join(root_dir, '%s.json' % split), "r") as f:
89
+ self.scene_list = json.load(f)
90
+ self.resolution = resolution
91
+ self.first_K = first_K
92
+ self.load_target = load_target
93
+ self.name = name
94
+
95
+ def __len__(self):
96
+ return len(self.scene_list)
97
+
98
+ def __getitem__(self, idx):
99
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
100
+ with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f:
101
+ meta = json.load(f)
102
+ imgs = []
103
+ poses = []
104
+ for i_img in range(self.first_K):
105
+ meta_img = meta['frames'][i_img]
106
+
107
+ if i_img == 0 or self.load_target:
108
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
109
+ img = imageio.imread(img_path)
110
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
111
+ imgs.append(img)
112
+
113
+ c2w = meta_img['transform_matrix']
114
+ poses.append(c2w)
115
+
116
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
117
+ mask = imgs[:, :, :, -1]
118
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
119
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
120
+ poses = torch.tensor(np.array(poses).astype(np.float32))
121
+ return imgs, poses
122
+
123
+ def blend_rgba(self, img):
124
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
125
+ return img
126
+
127
+ class WILD(Dataset):
128
+ def __init__(self, root_dir='data/nerf_wild',\
129
+ first_K=33, resolution=256, load_target=False):
130
+ self.root_dir = root_dir
131
+ self.scene_list = sorted(next(os.walk(root_dir))[1])
132
+ self.resolution = resolution
133
+ self.first_K = first_K
134
+ self.load_target = load_target
135
+
136
+ def __len__(self):
137
+ return len(self.scene_list)
138
+
139
+ def __getitem__(self, idx):
140
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
141
+ with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f:
142
+ meta = json.load(f)
143
+ imgs = []
144
+ poses = []
145
+ for i_img in range(self.first_K):
146
+ meta_img = meta['frames'][i_img]
147
+
148
+ if i_img == 0 or self.load_target:
149
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
150
+ img = imageio.imread(img_path + '.png')
151
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
152
+ imgs.append(img)
153
+
154
+ c2w = meta_img['transform_matrix']
155
+ poses.append(c2w)
156
+
157
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
158
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
159
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
160
+ poses = torch.tensor(np.array(poses).astype(np.float32))
161
+ return imgs, poses
162
+
163
+ def blend_rgba(self, img):
164
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
165
+ return img
ldm/data/simple.py ADDED
@@ -0,0 +1,526 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+ import webdataset as wds
3
+ import numpy as np
4
+ from omegaconf import DictConfig, ListConfig
5
+ import torch
6
+ from torch.utils.data import Dataset
7
+ from pathlib import Path
8
+ import json
9
+ from PIL import Image
10
+ from torchvision import transforms
11
+ import torchvision
12
+ from einops import rearrange
13
+ from ldm.util import instantiate_from_config
14
+ from datasets import load_dataset
15
+ import pytorch_lightning as pl
16
+ import copy
17
+ import csv
18
+ import cv2
19
+ import random
20
+ import matplotlib.pyplot as plt
21
+ from torch.utils.data import DataLoader
22
+ import json
23
+ import os, sys
24
+ import webdataset as wds
25
+ import math
26
+ from torch.utils.data.distributed import DistributedSampler
27
+
28
+ # Some hacky things to make experimentation easier
29
+ def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
30
+ ds = make_multi_folder_data(paths, caption_files, **kwargs)
31
+ return TransformDataset(ds)
32
+
33
+ def make_nfp_data(base_path):
34
+ dirs = list(Path(base_path).glob("*/"))
35
+ print(f"Found {len(dirs)} folders")
36
+ print(dirs)
37
+ tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
38
+ datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
39
+ return torch.utils.data.ConcatDataset(datasets)
40
+
41
+
42
+ class VideoDataset(Dataset):
43
+ def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
44
+ self.root_dir = Path(root_dir)
45
+ self.caption_file = caption_file
46
+ self.n = n
47
+ ext = "mp4"
48
+ self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
49
+ self.offset = offset
50
+
51
+ if isinstance(image_transforms, ListConfig):
52
+ image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
53
+ image_transforms.extend([transforms.ToTensor(),
54
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
55
+ image_transforms = transforms.Compose(image_transforms)
56
+ self.tform = image_transforms
57
+ with open(self.caption_file) as f:
58
+ reader = csv.reader(f)
59
+ rows = [row for row in reader]
60
+ self.captions = dict(rows)
61
+
62
+ def __len__(self):
63
+ return len(self.paths)
64
+
65
+ def __getitem__(self, index):
66
+ for i in range(10):
67
+ try:
68
+ return self._load_sample(index)
69
+ except Exception:
70
+ # Not really good enough but...
71
+ print("uh oh")
72
+
73
+ def _load_sample(self, index):
74
+ n = self.n
75
+ filename = self.paths[index]
76
+ min_frame = 2*self.offset + 2
77
+ vid = cv2.VideoCapture(str(filename))
78
+ max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
79
+ curr_frame_n = random.randint(min_frame, max_frames)
80
+ vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
81
+ _, curr_frame = vid.read()
82
+
83
+ prev_frames = []
84
+ for i in range(n):
85
+ prev_frame_n = curr_frame_n - (i+1)*self.offset
86
+ vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
87
+ _, prev_frame = vid.read()
88
+ prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
89
+ prev_frames.append(prev_frame)
90
+
91
+ vid.release()
92
+ caption = self.captions[filename.name]
93
+ data = {
94
+ "image": self.tform(Image.fromarray(curr_frame[...,::-1])),
95
+ "prev": torch.cat(prev_frames, dim=-1),
96
+ "txt": caption
97
+ }
98
+ return data
99
+
100
+ # end hacky things
101
+
102
+
103
+ def make_tranforms(image_transforms):
104
+ # if isinstance(image_transforms, ListConfig):
105
+ # image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
106
+ image_transforms = []
107
+ image_transforms.extend([transforms.ToTensor(),
108
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
109
+ image_transforms = transforms.Compose(image_transforms)
110
+ return image_transforms
111
+
112
+
113
+ def make_multi_folder_data(paths, caption_files=None, **kwargs):
114
+ """Make a concat dataset from multiple folders
115
+ Don't suport captions yet
116
+
117
+ If paths is a list, that's ok, if it's a Dict interpret it as:
118
+ k=folder v=n_times to repeat that
119
+ """
120
+ list_of_paths = []
121
+ if isinstance(paths, (Dict, DictConfig)):
122
+ assert caption_files is None, \
123
+ "Caption files not yet supported for repeats"
124
+ for folder_path, repeats in paths.items():
125
+ list_of_paths.extend([folder_path]*repeats)
126
+ paths = list_of_paths
127
+
128
+ if caption_files is not None:
129
+ datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
130
+ else:
131
+ datasets = [FolderData(p, **kwargs) for p in paths]
132
+ return torch.utils.data.ConcatDataset(datasets)
133
+
134
+
135
+
136
+ class NfpDataset(Dataset):
137
+ def __init__(self,
138
+ root_dir,
139
+ image_transforms=[],
140
+ ext="jpg",
141
+ default_caption="",
142
+ ) -> None:
143
+ """assume sequential frames and a deterministic transform"""
144
+
145
+ self.root_dir = Path(root_dir)
146
+ self.default_caption = default_caption
147
+
148
+ self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
149
+ self.tform = make_tranforms(image_transforms)
150
+
151
+ def __len__(self):
152
+ return len(self.paths) - 1
153
+
154
+
155
+ def __getitem__(self, index):
156
+ prev = self.paths[index]
157
+ curr = self.paths[index+1]
158
+ data = {}
159
+ data["image"] = self._load_im(curr)
160
+ data["prev"] = self._load_im(prev)
161
+ data["txt"] = self.default_caption
162
+ return data
163
+
164
+ def _load_im(self, filename):
165
+ im = Image.open(filename).convert("RGB")
166
+ return self.tform(im)
167
+
168
+ class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
169
+ def __init__(self, root_dir, batch_size, total_view, train=None, validation=None,
170
+ test=None, num_workers=4, **kwargs):
171
+ super().__init__(self)
172
+ self.root_dir = root_dir
173
+ self.batch_size = batch_size
174
+ self.num_workers = num_workers
175
+ self.total_view = total_view
176
+
177
+ if train is not None:
178
+ dataset_config = train
179
+ if validation is not None:
180
+ dataset_config = validation
181
+
182
+ if 'image_transforms' in dataset_config:
183
+ image_transforms = [torchvision.transforms.Resize(dataset_config.image_transforms.size)]
184
+ else:
185
+ image_transforms = []
186
+ image_transforms.extend([transforms.ToTensor(),
187
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
188
+ self.image_transforms = torchvision.transforms.Compose(image_transforms)
189
+
190
+
191
+ def train_dataloader(self):
192
+ dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=False, \
193
+ image_transforms=self.image_transforms)
194
+ sampler = DistributedSampler(dataset)
195
+ return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
196
+
197
+ def val_dataloader(self):
198
+ dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=True, \
199
+ image_transforms=self.image_transforms)
200
+ sampler = DistributedSampler(dataset)
201
+ return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
202
+
203
+ def test_dataloader(self):
204
+ return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=self.validation),\
205
+ batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
206
+
207
+
208
+ class ObjaverseData(Dataset):
209
+ def __init__(self,
210
+ root_dir='.objaverse/hf-objaverse-v1/views',
211
+ image_transforms=[],
212
+ ext="png",
213
+ default_trans=torch.zeros(3),
214
+ postprocess=None,
215
+ return_paths=False,
216
+ total_view=4,
217
+ validation=False
218
+ ) -> None:
219
+ """Create a dataset from a folder of images.
220
+ If you pass in a root directory it will be searched for images
221
+ ending in ext (ext can be a list)
222
+ """
223
+ self.root_dir = Path(root_dir)
224
+ self.default_trans = default_trans
225
+ self.return_paths = return_paths
226
+ if isinstance(postprocess, DictConfig):
227
+ postprocess = instantiate_from_config(postprocess)
228
+ self.postprocess = postprocess
229
+ self.total_view = total_view
230
+
231
+ if not isinstance(ext, (tuple, list, ListConfig)):
232
+ ext = [ext]
233
+
234
+ with open(os.path.join(root_dir, 'valid_paths.json')) as f:
235
+ self.paths = json.load(f)
236
+
237
+ total_objects = len(self.paths)
238
+ if validation:
239
+ self.paths = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
240
+ else:
241
+ self.paths = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
242
+ print('============= length of dataset %d =============' % len(self.paths))
243
+ self.tform = image_transforms
244
+
245
+ def __len__(self):
246
+ return len(self.paths)
247
+
248
+ def cartesian_to_spherical(self, xyz):
249
+ ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
250
+ xy = xyz[:,0]**2 + xyz[:,1]**2
251
+ z = np.sqrt(xy + xyz[:,2]**2)
252
+ theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
253
+ #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
254
+ azimuth = np.arctan2(xyz[:,1], xyz[:,0])
255
+ return np.array([theta, azimuth, z])
256
+
257
+ def get_T(self, target_RT, cond_RT):
258
+ R, T = target_RT[:3, :3], target_RT[:, -1]
259
+ T_target = -R.T @ T
260
+
261
+ R, T = cond_RT[:3, :3], cond_RT[:, -1]
262
+ T_cond = -R.T @ T
263
+
264
+ theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
265
+ theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
266
+
267
+ d_theta = theta_target - theta_cond
268
+ d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
269
+ d_z = z_target - z_cond
270
+
271
+ d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
272
+ return d_T
273
+
274
+ def load_im(self, path, color):
275
+ '''
276
+ replace background pixel with random color in rendering
277
+ '''
278
+ try:
279
+ img = plt.imread(path)
280
+ except:
281
+ print(path)
282
+ sys.exit()
283
+ img[img[:, :, -1] == 0.] = color
284
+ img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
285
+ return img
286
+
287
+ def __getitem__(self, index):
288
+
289
+ data = {}
290
+ if self.paths[index][-2:] == '_1': # dirty fix for rendering dataset twice
291
+ total_view = 8
292
+ else:
293
+ total_view = 4
294
+ index_target, index_cond = random.sample(range(total_view), 2) # without replacement
295
+ filename = os.path.join(self.root_dir, self.paths[index])
296
+
297
+ # print(self.paths[index])
298
+
299
+ if self.return_paths:
300
+ data["path"] = str(filename)
301
+
302
+ color = [1., 1., 1., 1.]
303
+
304
+ try:
305
+ target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
306
+ cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
307
+ target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
308
+ cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
309
+ except:
310
+ # very hacky solution, sorry about this
311
+ filename = os.path.join(self.root_dir, '692db5f2d3a04bb286cb977a7dba903e_1') # this one we know is valid
312
+ target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
313
+ cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
314
+ target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
315
+ cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
316
+ target_im = torch.zeros_like(target_im)
317
+ cond_im = torch.zeros_like(cond_im)
318
+
319
+ data["image_target"] = target_im
320
+ data["image_cond"] = cond_im
321
+ data["T"] = self.get_T(target_RT, cond_RT)
322
+
323
+ if self.postprocess is not None:
324
+ data = self.postprocess(data)
325
+
326
+ return data
327
+
328
+ def process_im(self, im):
329
+ im = im.convert("RGB")
330
+ return self.tform(im)
331
+
332
+ class FolderData(Dataset):
333
+ def __init__(self,
334
+ root_dir,
335
+ caption_file=None,
336
+ image_transforms=[],
337
+ ext="jpg",
338
+ default_caption="",
339
+ postprocess=None,
340
+ return_paths=False,
341
+ ) -> None:
342
+ """Create a dataset from a folder of images.
343
+ If you pass in a root directory it will be searched for images
344
+ ending in ext (ext can be a list)
345
+ """
346
+ self.root_dir = Path(root_dir)
347
+ self.default_caption = default_caption
348
+ self.return_paths = return_paths
349
+ if isinstance(postprocess, DictConfig):
350
+ postprocess = instantiate_from_config(postprocess)
351
+ self.postprocess = postprocess
352
+ if caption_file is not None:
353
+ with open(caption_file, "rt") as f:
354
+ ext = Path(caption_file).suffix.lower()
355
+ if ext == ".json":
356
+ captions = json.load(f)
357
+ elif ext == ".jsonl":
358
+ lines = f.readlines()
359
+ lines = [json.loads(x) for x in lines]
360
+ captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
361
+ else:
362
+ raise ValueError(f"Unrecognised format: {ext}")
363
+ self.captions = captions
364
+ else:
365
+ self.captions = None
366
+
367
+ if not isinstance(ext, (tuple, list, ListConfig)):
368
+ ext = [ext]
369
+
370
+ # Only used if there is no caption file
371
+ self.paths = []
372
+ for e in ext:
373
+ self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}"))))
374
+ self.tform = make_tranforms(image_transforms)
375
+
376
+ def __len__(self):
377
+ if self.captions is not None:
378
+ return len(self.captions.keys())
379
+ else:
380
+ return len(self.paths)
381
+
382
+ def __getitem__(self, index):
383
+ data = {}
384
+ if self.captions is not None:
385
+ chosen = list(self.captions.keys())[index]
386
+ caption = self.captions.get(chosen, None)
387
+ if caption is None:
388
+ caption = self.default_caption
389
+ filename = self.root_dir/chosen
390
+ else:
391
+ filename = self.paths[index]
392
+
393
+ if self.return_paths:
394
+ data["path"] = str(filename)
395
+
396
+ im = Image.open(filename).convert("RGB")
397
+ im = self.process_im(im)
398
+ data["image"] = im
399
+
400
+ if self.captions is not None:
401
+ data["txt"] = caption
402
+ else:
403
+ data["txt"] = self.default_caption
404
+
405
+ if self.postprocess is not None:
406
+ data = self.postprocess(data)
407
+
408
+ return data
409
+
410
+ def process_im(self, im):
411
+ im = im.convert("RGB")
412
+ return self.tform(im)
413
+ import random
414
+
415
+ class TransformDataset():
416
+ def __init__(self, ds, extra_label="sksbspic"):
417
+ self.ds = ds
418
+ self.extra_label = extra_label
419
+ self.transforms = {
420
+ "align": transforms.Resize(768),
421
+ "centerzoom": transforms.CenterCrop(768),
422
+ "randzoom": transforms.RandomCrop(768),
423
+ }
424
+
425
+
426
+ def __getitem__(self, index):
427
+ data = self.ds[index]
428
+
429
+ im = data['image']
430
+ im = im.permute(2,0,1)
431
+ # In case data is smaller than expected
432
+ im = transforms.Resize(1024)(im)
433
+
434
+ tform_name = random.choice(list(self.transforms.keys()))
435
+ im = self.transforms[tform_name](im)
436
+
437
+ im = im.permute(1,2,0)
438
+
439
+ data['image'] = im
440
+ data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}"
441
+
442
+ return data
443
+
444
+ def __len__(self):
445
+ return len(self.ds)
446
+
447
+ def hf_dataset(
448
+ name,
449
+ image_transforms=[],
450
+ image_column="image",
451
+ text_column="text",
452
+ split='train',
453
+ image_key='image',
454
+ caption_key='txt',
455
+ ):
456
+ """Make huggingface dataset with appropriate list of transforms applied
457
+ """
458
+ ds = load_dataset(name, split=split)
459
+ tform = make_tranforms(image_transforms)
460
+
461
+ assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
462
+ assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
463
+
464
+ def pre_process(examples):
465
+ processed = {}
466
+ processed[image_key] = [tform(im) for im in examples[image_column]]
467
+ processed[caption_key] = examples[text_column]
468
+ return processed
469
+
470
+ ds.set_transform(pre_process)
471
+ return ds
472
+
473
+ class TextOnly(Dataset):
474
+ def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
475
+ """Returns only captions with dummy images"""
476
+ self.output_size = output_size
477
+ self.image_key = image_key
478
+ self.caption_key = caption_key
479
+ if isinstance(captions, Path):
480
+ self.captions = self._load_caption_file(captions)
481
+ else:
482
+ self.captions = captions
483
+
484
+ if n_gpus > 1:
485
+ # hack to make sure that all the captions appear on each gpu
486
+ repeated = [n_gpus*[x] for x in self.captions]
487
+ self.captions = []
488
+ [self.captions.extend(x) for x in repeated]
489
+
490
+ def __len__(self):
491
+ return len(self.captions)
492
+
493
+ def __getitem__(self, index):
494
+ dummy_im = torch.zeros(3, self.output_size, self.output_size)
495
+ dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
496
+ return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
497
+
498
+ def _load_caption_file(self, filename):
499
+ with open(filename, 'rt') as f:
500
+ captions = f.readlines()
501
+ return [x.strip('\n') for x in captions]
502
+
503
+
504
+
505
+ import random
506
+ import json
507
+ class IdRetreivalDataset(FolderData):
508
+ def __init__(self, ret_file, *args, **kwargs):
509
+ super().__init__(*args, **kwargs)
510
+ with open(ret_file, "rt") as f:
511
+ self.ret = json.load(f)
512
+
513
+ def __getitem__(self, index):
514
+ data = super().__getitem__(index)
515
+ key = self.paths[index].name
516
+ matches = self.ret[key]
517
+ if len(matches) > 0:
518
+ retreived = random.choice(matches)
519
+ else:
520
+ retreived = key
521
+ filename = self.root_dir/retreived
522
+ im = Image.open(filename).convert("RGB")
523
+ im = self.process_im(im)
524
+ # data["match"] = im
525
+ data["match"] = torch.cat((data["image"], im), dim=-1)
526
+ return data
ldm/extras.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from omegaconf import OmegaConf
3
+ import torch
4
+ from ldm.util import instantiate_from_config
5
+ import logging
6
+ from contextlib import contextmanager
7
+
8
+ from contextlib import contextmanager
9
+ import logging
10
+
11
+ @contextmanager
12
+ def all_logging_disabled(highest_level=logging.CRITICAL):
13
+ """
14
+ A context manager that will prevent any logging messages
15
+ triggered during the body from being processed.
16
+
17
+ :param highest_level: the maximum logging level in use.
18
+ This would only need to be changed if a custom level greater than CRITICAL
19
+ is defined.
20
+
21
+ https://gist.github.com/simon-weber/7853144
22
+ """
23
+ # two kind-of hacks here:
24
+ # * can't get the highest logging level in effect => delegate to the user
25
+ # * can't get the current module-level override => use an undocumented
26
+ # (but non-private!) interface
27
+
28
+ previous_level = logging.root.manager.disable
29
+
30
+ logging.disable(highest_level)
31
+
32
+ try:
33
+ yield
34
+ finally:
35
+ logging.disable(previous_level)
36
+
37
+ def load_training_dir(train_dir, device, epoch="last"):
38
+ """Load a checkpoint and config from training directory"""
39
+ train_dir = Path(train_dir)
40
+ ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
41
+ assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
42
+ config = list(train_dir.rglob(f"*-project.yaml"))
43
+ assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
44
+ if len(config) > 1:
45
+ print(f"found {len(config)} matching config files")
46
+ config = sorted(config)[-1]
47
+ print(f"selecting {config}")
48
+ else:
49
+ config = config[0]
50
+
51
+
52
+ config = OmegaConf.load(config)
53
+ return load_model_from_config(config, ckpt[0], device)
54
+
55
+ def load_model_from_config(config, ckpt, device="cpu", verbose=False):
56
+ """Loads a model from config and a ckpt
57
+ if config is a path will use omegaconf to load
58
+ """
59
+ if isinstance(config, (str, Path)):
60
+ config = OmegaConf.load(config)
61
+
62
+ with all_logging_disabled():
63
+ print(f"Loading model from {ckpt}")
64
+ pl_sd = torch.load(ckpt, map_location="cpu")
65
+ global_step = pl_sd["global_step"]
66
+ sd = pl_sd["state_dict"]
67
+ model = instantiate_from_config(config.model)
68
+ m, u = model.load_state_dict(sd, strict=False)
69
+ if len(m) > 0 and verbose:
70
+ print("missing keys:")
71
+ print(m)
72
+ if len(u) > 0 and verbose:
73
+ print("unexpected keys:")
74
+ model.to(device)
75
+ model.eval()
76
+ model.cond_stage_model.device = device
77
+ return model
ldm/guidance.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Tuple
2
+ from scipy import interpolate
3
+ import numpy as np
4
+ import torch
5
+ import matplotlib.pyplot as plt
6
+ from IPython.display import clear_output
7
+ import abc
8
+
9
+
10
+ class GuideModel(torch.nn.Module, abc.ABC):
11
+ def __init__(self) -> None:
12
+ super().__init__()
13
+
14
+ @abc.abstractmethod
15
+ def preprocess(self, x_img):
16
+ pass
17
+
18
+ @abc.abstractmethod
19
+ def compute_loss(self, inp):
20
+ pass
21
+
22
+
23
+ class Guider(torch.nn.Module):
24
+ def __init__(self, sampler, guide_model, scale=1.0, verbose=False):
25
+ """Apply classifier guidance
26
+
27
+ Specify a guidance scale as either a scalar
28
+ Or a schedule as a list of tuples t = 0->1 and scale, e.g.
29
+ [(0, 10), (0.5, 20), (1, 50)]
30
+ """
31
+ super().__init__()
32
+ self.sampler = sampler
33
+ self.index = 0
34
+ self.show = verbose
35
+ self.guide_model = guide_model
36
+ self.history = []
37
+
38
+ if isinstance(scale, (Tuple, List)):
39
+ times = np.array([x[0] for x in scale])
40
+ values = np.array([x[1] for x in scale])
41
+ self.scale_schedule = {"times": times, "values": values}
42
+ else:
43
+ self.scale_schedule = float(scale)
44
+
45
+ self.ddim_timesteps = sampler.ddim_timesteps
46
+ self.ddpm_num_timesteps = sampler.ddpm_num_timesteps
47
+
48
+
49
+ def get_scales(self):
50
+ if isinstance(self.scale_schedule, float):
51
+ return len(self.ddim_timesteps)*[self.scale_schedule]
52
+
53
+ interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"])
54
+ fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps
55
+ return interpolater(fractional_steps)
56
+
57
+ def modify_score(self, model, e_t, x, t, c):
58
+
59
+ # TODO look up index by t
60
+ scale = self.get_scales()[self.index]
61
+
62
+ if (scale == 0):
63
+ return e_t
64
+
65
+ sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device)
66
+ with torch.enable_grad():
67
+ x_in = x.detach().requires_grad_(True)
68
+ pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t)
69
+ x_img = model.first_stage_model.decode((1/0.18215)*pred_x0)
70
+
71
+ inp = self.guide_model.preprocess(x_img)
72
+ loss = self.guide_model.compute_loss(inp)
73
+ grads = torch.autograd.grad(loss.sum(), x_in)[0]
74
+ correction = grads * scale
75
+
76
+ if self.show:
77
+ clear_output(wait=True)
78
+ print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item())
79
+ self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()])
80
+ plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2)
81
+ plt.axis('off')
82
+ plt.show()
83
+ plt.imshow(correction[0][0].detach().cpu())
84
+ plt.axis('off')
85
+ plt.show()
86
+
87
+
88
+ e_t_mod = e_t - sqrt_1ma*correction
89
+ if self.show:
90
+ fig, axs = plt.subplots(1, 3)
91
+ axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2)
92
+ axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2)
93
+ axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2)
94
+ plt.show()
95
+ self.index += 1
96
+ return e_t_mod
ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
+ f"current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+